
 Advanced search

Linux Journal Issue #51/July 1998

Features

The Crystal Experiment: Linux in a Physics Lab by Emanuele
Leonardi and Giovanni Organtini

Linux is now being used in high-energy nuclear studies in
Geneva by CERN.

Due South with the British Antarctic Survey by Craig Donlon and
James Crawshaw

Linux now facilitates scientific research in the Atlantic Ocean
and Antarctica.

Linux in a Scientific Laboratory by Przemek Klosowski, Nick
Maliszewskyj and Bud Dickerson

The authors tell us how they use Linux daily to fulfill the
requirements of their lab.

Global Position Reporting by Richard Parry
Although the GPS was originally intended for use by the military,
in peace time it has given rise to applications that were
heretofore limited to science fiction.

Javalanche: An Avalanche Predictor by Richard Sevenich and Rick
Price

This article introduces a prototypical avalanche predicting
software package implemented with a Fuzzy Logic algorithm.

ROOT: An Object-Oriented Data Analysis Framework by Fons
Rademakers and Rene Brun

A report on a data analysis tool currently being developed at
CERN.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895.html

News & Articles

A Glimpse of Icon: A Language For the Rest of Us by Clinton Jeffery
and Shamim Mohamed

This article gives a quick introduction to the programming
language Icon, developed at the University of Arizona.

Having Fun on ViewSurf by Pierre Ficheux
This article explains how linux is used in the ViewSurf “Beach
Report”, a fun WebCAM-based service.

Encrypted File Systems by Bear Giles
Here's a good way to protect your files. Mr. Giles explains how to
encrypt your entire file system rather than individual files.

Graphical Desktop Korn Shell by George Kraft IV
The Graphical Desktop Korn Shell (DtKsh) is a featured part of
the Common Desktop Environment (CDE). DtKsh provides a
consistent and reliable graphical Motif shell language that is
supported on all CDE-compliant systems.

A SCSI Test Tool for Linux by Pete Popov
Introducing Samba by John Blair

When you need to network your Linux box with Windows, Samba
is the way to do it.

Reviews

Softfocus BTree/ISAM v3.1 by Edmund P. Morgan
Insure++ by Jim Nance

WWWsmith

At the Forge Combining Apache and Perl by Reuven M. Lerner

Columns

Letters to the Editor
Stop the Presses COMDEX/Spring 1998 by Jon “maddog” Hall
Take Command lex and yacc: Tools Worth Knowing by Dean Allen
Provins

lex and yacc: Tools Worth Knowing Today, computers can talk
and they can listen—but how often do they do what you want?

New Products
Kernel Korner Miscellaneous Character Drivers by Alessandro
Rubini

Miscellaneous Character Drivers Mr. Rubini tells us how to
register a small device needing a single entry point with the
misc driver.

Linux Gazette The Yorick Programming Language by Cary O'Brien
The Yorick Programming Language Yorick is an interpreted
language for numerical analysis used by scientist on machines
from Linux laptops to Cray supercomputers.

Best of Technical Support

Archive Index

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/051/2354.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2590.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2643.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2672.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2716.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2844.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2951.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2974.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2957.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2982.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2227.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2956.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2920.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2184.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2961.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

The Crystal Experiment

Emanuele Leonardi

Giovanni Organtini

Issue #51, July 1998

Linux is now being used in high-energy nuclear studies in Geneva by CERN.

Imagine this: in a 27 kilometer long circular pipe running along a tunnel drilled
over 100 meters underground, two beams of a few billion protons accelerate to
an energy in excess of 14,000 times their own mass and collide head-on,
generating a small big bang where hundreds and hundreds of newly-created
particles are violently projected in all directions. Searching these, thousands of
physicists from all around the world will try to find a few new particles whose
existence, according to modern theories, would give new insights into the
deepest symmetries of the universe and possibly explain the origin of mass
itself.

This almost science fiction scenario is more or less what will happen near
Geneva, Switzerland, at CERN (see Resources [1]), the European Center for
Nuclear Research, when the Large Hadron Collider (LHC) starts its operations in
the year 2005. The instruments the scientists will use to observe these very
high-energy interactions are two huge and extremely complex particle
detectors, code-named ATLAS and CMS, each weighing over 10,000 tons,
positioned around the point where the protons will collide.

Figure 1. This photo shows one of the about 100,000 lead tungstate scintillating

crystals which will be used in the electromagnetic calorimeter of the CMS

experiment.

Our experimental physics group is now involved in a multi-disciplinary R&D
project (see Resources [2]) related to the construction of one of the two
detectors, CMS (Compact Muon Solenoid). In particular, we are studying the
characteristics of a new crystal, the lead tungstate or PWO, which, when hit by a
particle, emits visible light. About 100,000 small PWO bars (Figure 1) will

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f1.jpg

compose the part of the CMS detector called the “electromagnetic calorimeter”,
which will measure the energy of all the electrons and photons created in the
collisions.

Figure 2. The dark chamber of our experimental bench: crystals to be measured

are inserted here. The rail on the top moves a small radioactive source along

the crystal (here wrapped in aluminum foil) and the produced light is collected

by the phototube on the left.

In our laboratory, located in the Physics Department of the University “La
Sapienza” in Rome, Italy, we spent the past two years setting up a full
experimental bench to measure all the interesting properties of this crystal. The
PWO crystals are inserted into a dark chamber (Figure 2) and a small
radioactive source is used to excite them so that we can measure the small
quantities of light produced. Instruments used on the bench include light
detectors, temperature probes, analog-to-digital converters (ADC), high-voltage
power supplies, and step motors (Figure 3). To interconnect and control most
of these instruments and to allow a digital readout of the data, we used the
somewhat old (but perfectly apt to our needs) CAMAC standard.

Figure 3. The electric signal coming from the phototube is fed into a CAMAC-

based DAQ chain which amplifies and digitizes it before sending it to our

computer. The photo shows all the instruments involved in the operation.

One of the problems we had to face when the project began at the end of 1995
was how to connect the data acquisition (DAQ) chain to a computer system for
data collection without exceeding the limited resources of our budget. A
possibility was the use of an old ISA-bus-based CAMAC controller board
available from past experiments. This was a CAEN A151 board released in 1990,
a low-level device which nonetheless guaranteed the speed we needed. We
then bought an off-the-shelf 100 MHz Pentium PC to handle all the
communications. The problem was how to use it. CAEN only provided a very
old MS-DOS software driver which, of course, hardly suited our needs as the
mono-user, mono-task operating system could not easily fit into our UNIX-
based environment.

Enter Linux

One of us (E.L.) was using Linux at the time on his PC at home where he could
appreciate Linux's stability and the possibilities offered by the complete
availability of the source code. The idea of using such a system in our lab
presented several appealing features. First, using Linux would give us a very
reliable and efficient operating system. The CPU time fraction spent in user
programs is quite large with respect to the time used by the kernel, and there is
complete control of priorities and resource sharing among processes. This

https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f3.jpg

feature is of great importance when the time performances of the DAQ
program are strict (but not so strict to require a true real-time system): data
acquisition can be given maximum priority over any other task that may be
running on the same computer, such as monitor programs or user shells.

Moreover, we had access to a large UNIX cluster composed of HP workstations
which we could use for data analysis. Using Linux, with all the facilities typical of
a UNIX OS and the GNU compilers, the data acquisition system could be
smoothly integrated with this cluster. Porting of scripts and programs would be
straightforward and the use of the TCP/IP-based tools (NFS, FTP) would permit
an automatic data transfer among the systems. Also, the use of X-based
graphical interfaces would permit remote monitoring of ongoing DAQ sessions,
not only from our offices, located a few hundred meters from the lab, but also
from remote locations such as CERN.

The multi-user environment would allow a personalized access to data and
programs, e.g., granting some users the permissions to start a DAQ session but
not to modify the software or allow user interference in ongoing DAQ sessions.

Last but not least, the entire system would be completely free under the GNU
license, including compilers, development tools, GUIs and all the public domain
goodies that come with Linux.

All these advantages were quite clear in our minds but exploiting Linux was still
dependent on being able to use our old CAMAC controller board. It is here that
Linux proved all of its great potential as the operating system of choice in our
lab.

The CAMAC Device Driver

Our CAMAC controller consisted of a board which, when inserted on the ISA
bus of a computer, could connect to as many as seven different CAMAC crates,
each containing up to 22 different specialized devices connected to measuring
instruments.

This board was mapped on a known set of ISA bus memory addresses through
which a user could send commands to each individual instrument and retrieve
the responses. UNIX permits access to physical memory addresses only at the
kernel level: it was clear that we needed a set of software routines dedicated to
the interaction with the DAQ board, usually called a device driver, to insert into
the Linux kernel.

Though aware of the existence of kernel-level device drivers, none of us knew
exactly how to write one. (All this happened a few months before the
appearance of the good article by Alessandro Rubini. See Resources [3].) We

then decided to ask for help on the comp.os.linux.hardware newsgroup, and
less than 24 hours later we were contacted by Ole Streicher, a German
researcher who sent us the source code of a device driver he wrote for a
different CAMAC controller (see Resources [4]). Adapting it to our board was a
matter of a couple of days, and then experimental data were happily flowing in
and out of our DAQ system: the Linux option was finally open.

The ability to dynamically load and unload modules in the kernel, a feature
which had been introduced in Linux only a few months before, was of great
help in the driver development phase.

DAQ Control and Monitoring Programs

From the user's point of view, the CAMAC system was now visible via simple
files, one for each different crate, which could be opened, closed, written to and
read from. We also provided an interface library in order to hide the low-level
details of the CAMAC operations and facilitate code writing. The presence of
both the gcc C compiler and the f2c FORTRAN-to-C converter allowed us to
provide both a C and a FORTRAN version of this interface library, in order to
allow our colleagues to write their own DAQ programs.

Using this library we wrote the main DAQ program which was able to
automatically set the run conditions, control the movement of the radioactive
source via a serial link to a step motor, send light pulses to calibrate the light
sensors, and collect the data coming from the DAQ system and analyze them
on the fly. To write the user interface, we used the Tcl/Tk package (see
Resources [5]): all the program controls appeared on a graphical window which
could be opened on any X display (Figure 4).

Figure 4. This is a snapshot of our PC screen during an actual DAQ run. In the

center you can see the Tcl/Tk-based control interface while the window on the

left shows the data collected during the run. The histogram, updated in real-

time during the run, is created using the HBOOK and HPLOT packages of the

CERN libraries.

Parallel to the DAQ program, we wrote a program to monitor the status of the
data acquisition and of some important parameters such as the number of
events collected, event rate and average values. With a scientific libraries
package called CERNLIB (see Resources [6]) developed at CERN, freely available
along with its source code and widely used in the high-energy physics
community, we interfaced the monitor program to a simple analysis facility.
This allowed us to access interesting information and execute some preliminary
analysis even while the DAQ was being done (Figure 4).

https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f4.jpg

Figure 5. The authors of this article in their natural environment. On the left,

with an arm on the DAQ PC, is Emanuele Leonardi and on the right is Giovanni

Organtini.

Performance

An important factor for a DAQ system is the time performance. If the
controlling software is too slow, data may be lost and the time required to
collect a useful amount of data can grow to an unacceptable level.

We found the only time-limiting factor in our system was the conversion time of
the ADC board; the operating system could easily keep pace with the DAQ task,
even while running several other user tasks. This is very important, as this year
our bench will move from a prototype level with a single active DAQ chain to an
industrial-strength production facility where multiple measurements will
proceed in parallel in order to quickly handle all of the many thousands of
crystals needed for the CMS experiment.

In practice, we measured the time to execute a single CAMAC operation to be
on the order of 10 microseconds, large with respect to the 1.5 microseconds
minimum CAMAC operation time, but very good for an inexpensive board such
as the CAEN A151 and much lower than the ADC response time of 110
microseconds.

Conclusion

Thanks to the introduction of Linux in our lab, we were able to realize a
complete data acquisition and monitoring system using an off-the-shelf
Pentium PC and a low-cost CAMAC board.

The system has been performing flawlessly since the beginning of 1996, and
the data collected have been used to study the properties of PWO crystals,
which will be used in the CMS experiment at CERN.

The key points in using Linux were the availability of the kernel code and the
enthusiasm and technical knowledge of the Linux community which enabled us
to create a personalized device driver for our data acquisition system. The
standard UNIX tools and the GNU compilers guaranteed a perfect integration
with the existing machines and an immediate acceptance of the system by all
the physicists in our group.

As soon as we started to show our work, we were invited to several congresses
dedicated to computing for high-energy physics and data acquisition systems
all around Europe (the PCaPAC'96 Workshop in Hamburg, Germany, the
ESONE'97 Workshop at CERN and the CHEP'97 Conference in Berlin, Germany).

https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2214f5.jpg

Everywhere we got in touch with many other Linux enthusiasts working on
related items; the interest of the high-energy physics community in Linux is
very high indeed.

We now plan to use this same system for a larger automatic bench which will
be used in the next six years to measure the properties of the tens of
thousands of crystals which will be used to build the electromagnetic
calorimeter of the CMS experiment.

For those interested in our work, an archive containing the latest version of the
device driver code and the interface libraries can be found on our FTP site at
ftp://ftpl3.roma1.infn.it/pub/linux/local/.

Resources

Emanuele Leonardi got his Ph.D. in physics in 1997 at the University “La
Sapienza” in Rome. He is now working as a technology researcher for the
National Institute of Nuclear Physics in Rome.

Both authors worked in the L3 experiment at CERN where they published
several physics papers and are now collaborating on the CMS experiment R&D
phase.

Giovanni Organtini got his Ph.D. in physics in 1995 at the University “La
Sapienza” in Rome. He is now a physics researcher at the University RomaTRE
in Rome.

Both authors worked in the L3 experiment at CERN where they published
several physics papers and are now collaborating on the CMS experiment R&D
phase.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/051/2214s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Due South with the British Antarctic Survey

Craig Donlon

James Crawshaw

Issue #51, July 1998

Linux now facilitates scientific research in the Atlantic Ocean and Antarctica.

A cold and windy September afternoon marks the start of the fifth Atlantic
Meridional Transect (AMT) experiment aboard the British Antarctic Survey (BAS)
research vessel RRS James Clark Ross. Each year the ship sails from the UK to
the Falkland Islands in September en route to service the UK Antarctic research
bases. Jim (our UNIX support engineer) is busy fastening down his trusty
Toshiba laptop (Tecra 730XCDT with 48MB) in his cabin on board James Clark
Ross in preparation for the inevitable bad weather. Ahead of us lie six weeks of
precision ocean-atmosphere measurements, near real-time data processing,
heated debate, troubleshooting and, hopefully, some scientific discovery.
Fortunately, we have both chosen one of the most versatile and reliable
operating systems at hand to maximize our output during this experiment—
Linux. This article discusses the impact of Linux, which is now routinely used at
BAS and during the AMT experiments. (See http://www1.npm.ac.uk/amt/ for
more information on the AMT project.)

The Atlantic Meridional Transect Experiment

Figure 1. The British Antarctic Survey research vessel RRS James Clark Ross
used for the AMT experiments (Photo: Tony Bale)

The RRS James Clark Ross (shown in Figure 1) was launched in 1990 and is one
of the world's most complex marine research vessels, incorporating over 400
square meters of scientific laboratory space. It was named after the scientist
and polar explorer Admiral Sir James Clark Ross, RN (1800-1862), who in
February 1842 reached 78.9 degrees S—a record which remarkably stood well
into the 20th century.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f1.jpg

Figure 2 shows the track taken by the James Clark Ross during the and AMT-5
cruise superimposed on a monthly composite satellite image of Chlorophyll a
derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) carried on
the SeaStar spacecraft. Different types of phytoplankton have characteristically
different concentrations of chlorophyll and are, therefore, different in color. By
measuring the color of the ocean with the SeaWiFS instrument, estimates of the
amount and general type of phytoplankton in specific regions can be made as
shown in Figure 2. An extensive web site provides a wealth of information on
the SeaWiFS mission at http://seawifs.gsfc.nasa.gov/SEAWIFS.html.

Figure 2. Ground track of the RRS James Clark Ross during the AMT-5
experiment superimposed onto a SeaWiFS satellite composite image of
Chlorophyll a. White marks regions of cloud and the arrow highlights the
direction of the north equatorial current system which is pushing nutrient rich
Amazon water to the north west. (Image courtesy of Stanford B. Hooker.)

The ocean-atmosphere measurements taken during the AMT cruises are
fundamental for the calibration, validation and interpretation of remotely
sensed observations, including sea-surface temperature, wind speed,
atmospheric water vapour and ocean colour (which can be related to bio-
optical processes)—all of which are vital for ongoing climate research. Figure 3
shows the instrument cluster mounted on the forward mast of the James Clark
Ross which measures, among other things, sea-surface temperature (using an
infrared radiometer), solar radiation, wind speed and direction, air
temperature, radar backscatter (a measure of surface roughness) and
humidity. All of these measurements are used to investigate the processes,
occurring at the air-sea interface, which in many cases define the signal actually
measured by the satellite instruments. (See http://www1.npm.ac.uk/amt/ for
more information on the AMT project.)

Figure 3. Forward mast installation of the RRS James Clark Ross showing some
of the radiometers and the radar system.

Why Choose Linux?

From a system engineer's point of view, the main requirement of an operating
system is that it integrate with the existing computing infrastructure available
on (in this case) BAS ships and also at Antarctic bases as well as at
headquarters. Since the majority of instruments are logged to Sun SPARC
workstations, it makes sense to run an OS which allows NFS mounts to the data
areas the workstations create. Many users require the ability to perform data
processing locally without having to place extra strain on the data-logging
workstations. As most of this is undertaken using shell scripts or compiled C
source code, it made sense to run a form of UNIX locally. This enables shell

https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f3.jpg

scripts to run with no modifications and the C code to easily recompile. Other
user-driven considerations included access to backup hardware, hard-copy
output, real-time data displays and access to a common library of software
packages.

Figure 4. The main laboratory space occupied by the Linux workstations aboard

the RRS James Clark Ross during the AMT experiments.

Upon considering these requirements, our choice was made simple: it had to
be Red Hat Linux. For our purpose, Linux provides an extremely versatile
operating system with the ability to effortlessly and seamlessly integrate itself
efficiently into any existing network system. The immense amount of
supported hardware made installation on Jim's laptop and on our desktop
machines a painless exercise, and we were delighted with the way that even a
default installation gave us exactly what we wanted. It is this kind of hardware
support and user-friendly installation interface which caught our eye in the first
place when considering various UNIX systems for Intel processors.

After unpacking our brand new PC (Intel DX 120; 32MB RAM) and removing the
pre-installed OS (we did ask for Linux), the whole installation took less than an
afternoon. We now had a fully working UNIX workstation configured within the
James Clark Ross NIS domain, auto-mounting file systems whenever required.
Jim went even further with his laptop. Using Caldera Wabi 2.0, he had the ability
to run the BAS standard word processor and e-mail packages (which are MS
Windows-based). Being able to do all this using free or inexpensive software
proves what a professional product Linux is. Gone are the days when Linux was
considered a “toy UNIX” for hackers—it is now a fully functional UNIX
environment which is just as stable (if not more) as the various commercial
UNIX systems on the market.

Software Support

Software support for Linux is already immense, and growing rapidly. Of
particular importance was our need to use the RSI Inc. Interactive Data
Language (IDL) to develop processing tools and visualize our data in near real
time. IDL is a powerful data-visualization tool, and RSI Inc. recognized the
power of Linux several years ago by choosing to support it. Using Linux IDL, a
complete data-processing suite was developed for two new instruments
deployed during the AMT which are still in active use today. We also had a need
to effectively communicate and work on collective documents during our time
at sea. Most users choose MS Word for this purpose, and using Caldera Wabi
2.0, we were easily able to supply this application. This, coupled with Linux's
ability to mount Novell Netware volumes, meant that we truly had the best of
both worlds: access to all our UNIX file systems plus the Netware volumes and

https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2478f4.jpg

associated applications. In fact, we found certain applications ran significantly
more reliably under Wabi than they did under their native operating system.

For example, the Wabi interface allowed us to manipulate (independent of the
ship's logging system) a Campbell Scientific Data Logger located on the forward
mast via short-haul modem communications connected to the Linux desktop.
Using Campbell's own data logger software under Windows 95, we found that
significant drifts in the system date-time stamp of 10min/day were confusing
the data logger, which is auto-adjusted to keep the data logger time in sync
with the PC time. The only solution was a system restart every 6 hours or so in
order for Windows 95 to grab a correct time on startup. We found that under
Linux Wabi, these problems no longer existed.

Linux in Other Areas

The British Antarctic Survey has written custom software to allow its ships and
bases to send and receive electronic mail with the rest of the world using
standard Internet e-mail addresses. It was decided to write custom software so
that mail could be compressed more efficiently than when using standard
protocols, and this in turn reduces costs as it decreases the amount of
expensive satellite air time required.

When considering all the requirements, it became clear that a system based
around Sendmail running on a UNIX workstation was an almost ideal solution.
This solution could be easily implemented on our ships and bases which
already had Sun SPARC workstations. As for two smaller bases, it was decided
to send PCs running Debian Linux. Again, Linux proved to be an inexpensive
but professional solution to a problem. It would have been difficult to justify the
expense of Sun SPARCs for the smaller bases, whereas it was relatively
inexpensive to install Linux on a couple of older PCs which still performed well.
The fact that BAS chose to use Linux to perform Antarctic communications with
two of its bases shows its trust in the stability of Linux, as the communications
systems are vital to the normal operation of bases.

Conclusions

Without Linux, the computing options for these types of operations are simple:
either pay large amounts of money for proprietary systems, or suffer at the
hands of a less versatile operating system. Linux changes all that. We are able
to function at a professional level at a minimum cost with all of the connectivity,
reliability, software choices and versatility that Linux offers. Support for Linux
within the British Antarctic Survey and Colorado Center for Astrodynamics
Research is increasing. Indeed, it is an officially supported operating system at
both institutions and not a toy which the IT hackers play with.

Many more users are requesting Linux for reasons as diverse as wanting to run
geophysical processing software on remote islands in the southern Atlantic to
simply wanting to run their PC as an intelligent X terminal. Today Linux offers a
truly cost-effective off-the-shelf solution for all of our requirements that rivals
anything else available in the marketplace. Linux is now being recognized for
what it is-a truly outstanding operating system that has grown immensely over
the last few years thanks to dedicated individuals and groups working in
cooperation with others.

Craig Donlon is a research fellow at the Colorado Center for Astrodynamics
Research. In between moving from the mile-high community of Boulder, Craig
can be found at the Applied Space Institute, European Joint Research Centre in
Ispra, Italy, and hacking satellite and ship data on his Linux machine. He can be
contacted at cjdn@colorado.edu.

James Crawshaw works for the British Antarctic Survey as a UNIX support
engineer based at their headquarters in Cambridge, although two to three
months a year are spent in Antarctica serving on board their research ships and
bases providing general computing support. He can be contacted in Cambridge
at james.crawshaw@bas.ac.uk.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:cjdn@colorado.edu
mailto:james.crawshaw@bas.ac.uk
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux in a Scientific Laboratory

Przemek Klosowski

Nick Maliszewskyj

Bud Dickerson

Issue #51, July 1998

The authors tell us how they use Linux daily to fulfill the requirements of their
lab.

Our laboratory, the NIST Center for Neutron Research (NCNR) at the National
Institute of Standards and Technology, uses neutron beams to probe the
structure and properties of materials. This technique is in many respects
similar to its better-known relative, X-ray scattering, but offers some unique
advantages for studies of materials as diverse as semiconductors,
superconductors, polymers and concrete.

Our work could not be done without computer technology. Computers help us
collect experimental data: they interface with the real world, controlling and
recording various physical parameters such as temperature, flux and
mechanical position. The collected measurements need to be displayed,
analyzed and communicated to others. All these stages require sophisticated
and flexible computer tools. In this article we will describe how Linux helps us
solve many needs that arise in our everyday work. We believe that our
experience might be typical of any scientific or engineering research and
development laboratory.

The main advantage we get from using Linux is its amazing flexibility. Because
of the open development model and open source code, there are no “black
box” subsystems; when something doesn't work correctly, we can usually
investigate the problem and fix it to our satisfaction. The significant spirit of
cooperation and mutual support found in Linux is important to us—a
consequence of the general philosophy of open software as well as the
practical result of source code being available for anyone to fix. Also, Linux is

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

rather robust, in the sense that once something is set up, it stays set up; Linux
shows none of the brittleness that, unfortunately, we have learned to expect
from mainstream computer operating systems.

Unfortunately, sometimes we run into a lack of support for some useful
hardware or software. Since few manufacturers actively support Linux, the
driver availability on Linux lags behind Windows 95, although it is probably
better than any other environment thanks to the excellent work of many
people who contribute their hardware drivers. We avoid unsupported
hardware by checking the availability of drivers before purchasing, and by
staying away from the manufacturers who do not publish engineering
specifications for their products.

In the end, we use whichever environment does the job better. Since some
tools are available on Windows and not on Linux, we sometimes use the
former. For instance, the LabView software, available on Windows, is an
integrated graphical tool for rapid prototyping of data acquisition, with an
impressive collection of instrumentation hardware drivers. It is sometimes the
platform of choice, especially for exploratory work, although it doesn't scale
well for more complex tasks.

Overall, we have about 25 computers running Linux. We have been very happy
with their operation and have saved taxpayers a bundle of money in the
process. We have seen Linux grow from a virtual unknown, perceived as risky
and devoid of support, to its current status as a serious contender with brand-
name UNIX and NT boxes, and we definitely see Linux in our future.

Figure 1. NIST Center for Neutron Research

Interfacing to the Real World

Real-world data acquisition usually requires endlessly repeated high-precision
measurements, and so it is ideally suited for a computer, as long as the data is
available in computer-readable form. Unfortunately, data acquisition is not a
mass-market application, so the acquisition hardware tends to be expensive
and hard to obtain, even for the ubiquitous PC/x86 platform. Consider a sound
card: it has high quality analog-to-digital and digital-to-analog converters,
timers, wave-table memory, etc., all for around $100 US. Similar hardware with
relatively small modifications to make it suitable for data acquisition will
probably cost around $1000 US.

The scientific instruments we use at the NCNR are quite diverse and interesting
on their own; a lot of mechanical and electronic engineering is involved even
before computers get into the picture. Some of our instruments are quite
impressive in size and weight—we actually use decommissioned battleship gun

https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f2.jpg

turret components to support them. You can get a feel for the scale of our
instrumentation by looking at Figures 1 and 2; the experiment hall measures
approximately 30 by 60 meters.

For the purpose of this article, let us assume all the hard work of designing and
constructing an instrument has been done, including providing the appropriate
sensors that measure the interesting physical quantities such as temperature,
radiation intensity or position. Our task is to read data from these sensors into
the computer. (Because of concerns for cost and availability of hardware, PC/
x86 platform is the practical choice for data acquisition tasks.)

RS-232 (Serial) Ports

The easiest and quite common situation is for the instrument to have a built-in
serial port. We can then talk to it using regular serial communication, just like
talking to a modem. Examples of such instruments in our lab include stepper
motor controllers, temperature controllers and various precise time
measurement apparatus.

The simplicity of a serial-line (RS-232) interface has a cost: a serial connection is
rather slow and unsuitable for situations requiring quick response or large
amounts of data. It also has the annoying feature of being a very loosely
defined standard. There are many variations: DTE vs. DCE configuration;
hardware vs. software handshake; various settings of data, stop and parity bits.
With so many possibilities, the probability that two randomly selected devices
will talk to each other right after plugging in the cable is vanishingly small. The
ubiquitous “break-out box” is helpful here: it is a small enclosure connected in
series with our serial cable, showing the status of data lines and allowing us to
reroute individual signal lines with jumper wires.

Compared to the difficulty of figuring out the proper cabling and
communication parameters, the actual programming of serial-port
communications is trivial, since Linux already provides good quality serial-port
drivers. (Linux, of course, does not rely on serial-port routines in PC BIOS and
MS-DOS, since they are so inadequate that a whole cottage industry was
created providing so-called “communication libraries”.)

One problem with serial-port communications: RS-232 is inherently a point-to-
point link—there is no standard and reliable way of connecting multiple devices
to the same serial line. There is a scheme where several devices are daisy-
chained, i.e., the computer's transmit line goes to the receive input of device 1,
its transmit goes to device 2's receive, and so on, until the transmit line of the
last device returns to the computer's receive pin. This requires that all devices
cooperate by passing on data not destined for them; it is also not reliable when
there can be asynchronous responses from devices in the chain. One of the two

standard serial ports usually provided on a PC platform is occupied by the
mouse, so we need a multi-port expansion board if we need more than one
serial line. Fortunately, Linux has built-in support for several inexpensive multi-
port boards. We have used Cyclades and STB boards; they are very easy to
configure, and their drivers present themselves to the programmer as a regular
serial port.

For initial exploration and testing, we normally use either the Seyon or Kermit
terminal emulators. Seyon comes with most Linux distributions, while Kermit
has to be obtained from Columbia University's FTP site, as its license terms
prohibit third-party distribution. The minicom program is harder to configure,
so we do not use it much.

Nick wrote a Tool Command Language (Tcl) serial communication extension for
flexible serial-port I/O, with timeouts and terminator characters. Tcl fits well
within our environment because it can be conveniently embedded as a
scripting tool for heavy-duty FORTRAN and C programs, and it allows for rapid
development, while being robust enough to be deployed in a production
environment. We will discuss the benefits of scripting in our environment later
in the article.

GPIB Bus

Another hardware interface popular in scientific and engineering communities
is the GPIB—General Purpose Interface Bus. It was designed and popularized
by Hewlett Packard (hence its original name HP-IB), and later became an official
industry standard, IEEE-488. It is a medium-speed parallel bus, capable of over
100Kbps bandwidth. Many scientific instruments support it, and there are
relatively inexpensive controllers for PCs, made by Hewlett Packard, National
Instruments and others. Fortunately, Linux kernel drivers, written by Claus
Schroeter, already exist for most common GPIB cards. (See “GPIB: Cool, It
Works With Linux” by Timotej Ecimovic, Linux Journal, March 1997.)

Versabus Module Europe (VME)

For those applications requiring very fast data transfer, the VME bus is a
common choice. VME is popular in the telecommunications industry, as well as
for industrial and military test and measurement applications. It is typically
housed in large (and expensive) backplane crates, containing 24 card slots.
Usually one of these slots is occupied by a controller that controls the I/O
modules in the remaining slots. Originally, VME was designed to work with
Motorola 68k-series CPUs, and so most crate controllers were 68k-based, but
recently PowerPC and even Pentium-based controllers seem to be more
popular.

It turns out that there are Linux ports to all of these architectures, but again, it
was simplest for us to use an x86-based VME controller. In most respects, it is a
standard Pentium/PCI miniature motherboard, with the only unusual feature
being an on-board PCI-VME bridge chip. We use a controller made by VMIC with
a VIC bridge chip set; Nick wrote a driver for it, based on another VME-bridge
driver we found on the Net.

All VME I/O is done via memory mapping. The I/O modules are accessed by
reading and writing their specific memory locations; the VME bridge chip is
needed to translate CPU native bus cycles onto the VME bus. A program simply
needs to map the appropriate memory area (using mmap), and it can then
execute regular memory load and store operations to access the VME
peripherals.

We are currently completing a large data-acquisition system that collects
precise timing information from events observed at over 800 detectors. We
have designed a front-end processor on a VME card module that handles 32
detectors, and another module which multiplexes data from these front-end
modules into the crate controller. As the maximum possible data rate in this
application is 300,000 events per second, VME is an appropriate platform.

Programmable Logic Controllers (PLC)

PLC are widely used in the industrial process control environments. (See “Using
Linux with Programmable Logic Controllers” by J. P. G. Quintana in Linux
Journal, January 1997.) They are descendants of relay-based control systems
and are built out of modular I/O blocks governed by a dedicated
microcontroller. The available modules include digital and analog I/O,
temperature control, motion control, etc. They trade off simplicity and low
speed for low cost and industrial grade reliability; they are also very nicely
integrated mechanically—individual modules pop into a mounting rail and can
be installed and removed easily. There are several PLC systems on the market;
we currently use the KOYO products.

Typically, a simple control program is developed in a proprietary cross-
compiling environment (usually in the form of a relay “ladder diagram”, a
method that dates back to days of electromechanical relays), and downloaded
via a serial link. Typically such programs run under Windows, but they need be
run only for development. After storing the control program in the flash
memory, the microcontroller communicates with our Linux boxes, sending data
and receiving commands via a built-in serial link.

Figure 2. One of our experimental stations, with the instrument control

computer on the left, and two VME crates plus a PLC unit. Linux runs on the PC

and in the controller of the lower VME crate.

Other Interfaces

The parallel port provides another popular computer interface. As Alessandro
Rubini explained in “Networking with the Printer Port” (Linux Journal, March
1997), the parallel port is basically a digital I/O port, with 12 output bits and 4
input bits (actually, the recent enhanced parallel port implementations allow 12
input bits as well). To a dedicated hobbyist that is a precious resource, which
can drive all kinds of devices (D/A and A/D converters, frequency synthesizers,
etc); unfortunately, there is usually only one such port in a computer, and it
tends to be inconveniently occupied by the printer. The serial port can also be
used in a non-standard way; its status lines may be independently controlled
and therefore provide several bits of digital I/O.

Such digital I/O can be used to “bit-bang” information to serial bus devices such
as I2C microcontrollers. (I2C is a two-wire serial protocol used by some
embedded microcontrollers, sometimes even available in consumer products.)

USB is another type of interface, appearing in terms of both available hardware
and Linux support. Although designed for peripherals such as keyboards, mice
or speakers, it is fast enough to be useful for some data-acquisition purposes,
and some manufacturers have already announced future products in this area.
One nice feature of USB is that a limited amount of power is available from the
USB connector, thereby eliminating the need for extra power cables for
external devices.

Network-Distributed Data Acquisition

With the decreasing cost of hardware and the flexibility afforded by Linux, we
have been planning to use distributed hardware control. Instead of having one
workstation linked to all the peripherals, we can deploy several stripped-down
computers (hardware servers), equipped with a network card but no keyboard
or monitor. Each of these would talk to a subset of hardware, executing
commands sent by the main control workstation (controlling client) over the
network. For the servers we can use either older, recycled 486-class machines,
or even the industry standard PC-104 modules (a miniature PC format
composed of stackable modules around 10 cm by 10 cm in size). In this case,
the Ethernet becomes our real-world interface.

https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2596f1.jpg

Scientific Visualization and Computations

Of course, we have also used Linux in the more traditional role as a general-
purpose graphics workstation. Here, we are no longer limited to x86
architecture. Since we don't have to contend with hardware issues, we have a
choice of several platforms, including Digital's Alpha-based computers.
Currently (February 1998), it is possible to buy a 533MHz Alpha workstation for
just over $2000 US; the prices seem to be going down, while the clock speed is
going up into the reputed range of 800MHz. Alpha Linux is ready for serious
computations at a very low price. Alpha is an excellent performer, especially for
floating-point calculations—the SPEC benchmark shows an integer
computation speed (SPECint95) of 15.7, and floating-point computation speed
(SPECfp95) of 19.5 for a slightly slower 500MHz Alpha. By comparison, Pentium
II at 233MHz exhibits SPECint95 of 9.49 and SPECfp95 of 6.43, one third the
floating-point performance of the Alpha chip.

We have been using Linux-based PC stations since 1995. Often they simply
serve as capable remote clients for our departmental computer servers,
providing better X terminal functionality at prices lower than some commercial
X terminals and for light local office computing. More and more, however, we
have used them to perform local computations. An intriguing project we are
currently considering is installing networked server processes for a certain kind
of calculation often performed here (non-linear fitting) and distributing parallel
calculations to servers which are not currently used by other clients. Since an
average personal computer spends most of its cycles waiting for keystrokes
from the user, we are planning to profitably use those free cycles.

This approach is, of course, inspired by the Beowulf cluster project, where
ensembles of Linux boxes are interconnected by dedicated fast networks, to
run massively parallel code. (See “I'm Not Going to Pay a Lot for This
Supercomputer!” by Jim Hill, Michael Warren and Pat Goda, Linux Journal,
January 1997.) There are several Beowulf installations in the Washington DC
area including Donald Becker's original site at NASA, and the LOBOS cluster at
National Institute of Health. In contrast, we plan to use non-dedicated
hardware, connected by a general purpose network. We can get away with this
because our situation does not require much inter-process communication.

Unfortunately, we don't have much space to discuss the scientific visualization;
it is a fascinating field both scientifically and aesthetically; it involves modern 3-
D graphics technologies, and some of the images are very pretty. Computer
visualization is a new field, and consequently the development tools are as
important as end-user applications. In our judgment, the best environment for
graphics is provided by the OpenGL environment. OpenGL is a programming
API designed by Silicon Graphics for their high-performance graphics systems,

which is beginning to appear on Windows; on Linux it is supported by some
commercial X servers. Also, Mesa is a free implementation of OpenGL that runs
on top of X and makes OpenGL available on Linux. This involves a tradeoff—3-D
graphics are significantly slower without the hardware assist provided by high-
end graphics hardware and matching OpenGL implementation, but the X
Window System's advantage of not being tied to any particular terminal is very
significant.

Building on Mesa/OpenGL, there are many excellent visualization programs
and toolkits, some referenced in the Mesa page. In particular, the VTK
visualization widgets and their accompanying book are worth mentioning.
Another application is GeomView, a generic engine for displaying geometric
objects, written at the University of Minnesota's Geometry Center.

Scripting and Very High-Level Languages

We have found the scripting-software methodology is very useful for both
scientific computing and data acquisition. Scripting is a style of writing software
where, instead of constructing a monolithic program with a hardwired control
flow, we restructure the code by dividing it into modules which perform parts
of the work. To glue these modules together, we compile them with a
command-language interpreter.

High-Level Language (HLL) interpreters have been around for a long time
(Scheme, Basic, Perl, Tcl, Python), but only recently has there been an emphasis
on embedding them within users' programs. Even without such embedding,
interpreters are still useful for prototyping, but they tend to run out of steam
for larger projects. The key is to put together the flexibility of an interpreted
system and the speed and functionality of the compiled HLL code.

For example, let's imagine a program that opens and processes a configuration
file, asks the user for input and calculates some results. Traditionally, the
control flow of such a program is hardwired in its main routine; each I/O phase
is programmed separately with a separate syntax for each phase's data. (The
configuration file might be a table of numbers, and the user input might have a
form of simple ASCII strings representing commands.)

To rewrite this program in a scripting style, we would recast configuration and
calculation phases as separate modules invoked by a scripting interpreter. The
data for work modules would be kept in interpreter's variables, while the I/O
would be handled by interpreter's native facilities. In order to complete the
program, we have to write a short interpreter script that reads the
configuration file, stores and processes the values, obtains user input, launches
the calculation and outputs the result. The important point, and the one that
takes a little while to get used to, is that there is no longer a hardwired control

flow in the program: when it is started, the interpreter takes over and awaits
the script (either from the command line or from a script file) to set the
modules in motion.

Of the several modern scripting languages, we have chosen to use Tcl/Tk.
Others, such as Python and Perl, are equally good and have similar capabilities.
We have written a significant number of Tcl extensions, dealing with
abstractions for platform-independent self-describing data files, binary data
matrices and image processing, arithmetic expressions and others.

There are several benefits to the scripting approach. First, it provides for more
flexibility: it would be trivial to change the interpreted script to perform two
rounds of computations instead of one. Also, it is much easier to decouple the
user-interface code from the computational code—all that is needed to add
GUI data input is to rewrite the user-interface portions of the script so that it
uses the interpreter's GUI widgets.

Second, the interpreter usually provides general-purpose linguistic constructs,
such as macros/procedures, and looping and conditional statements. This
makes it possible to write sophisticated and flexible batch processing scripts.

Note that a properly designed scriptable application reconciles an artificial and
unnecessary distinction between command-line and GUI-based programs. The
premise behind graphical user interfaces is to provide visual cues for all
operations; however, the tradeoff is often that other operations, for which no
GUI element was included, are impossible. In other words, a GUI promises a
“What You See is What You Get” operation, but it often delivers “What You Get
is What You Get”.

With scripting, the GUI is set up to invoke predefined command lists; at the
same time, the interpreter can be directed to accept user-typed commands or
file input, allowing for arbitrary command sequences. It is nice to be able to
select a file using a file selector dialog, but anyone who has had to negotiate
such file selection for a hundred files must appreciate the utility of typing
process *.dat on the command line.

The final benefit of an extensible scripting language is that it is well-suited to
create abstractions for complex objects or actions. Such abstractions are good
for two reasons: they make complex manipulations easier to understand and
perform, while at the same time they enable high performance since they are
compiled extensions. A good example might be BLT, a Tcl graphing extension
we often use. It is a sophisticated graphing tool with dozens of options. Its
complex internal structure is simply encapsulated: the advanced options are
available, but don't have to be used. All that is needed for a simple plot is to

provide values for the X and Y coordinates of the plot. At the same time,
because it is a compiled extension to Tcl, BLT enjoys quite good performance,
even on large plots, comparable to visualization tools written entirely in C.

Thanks to the dynamic loading of shared libraries and extensions, an existing
program can be enhanced with graphing capability by simply loading the BLT
package. This creates the new graph command in the Tcl interpreter, which can
then be used in the script that constructs the GUI.

Another example of a useful software abstraction that pops up in several
places in our work is the numerical array. Such arrays are extremely important
in science: they may contain vectors of data, geometrical coordinates, matrices,
etc. The standard HLLs usually have a concept of such an array, but it is usually
a second-class object. Arrays provide space for storage of data, but it is not
possible to perform infix arithmetic operations on them in the same way as on
simple, scalar variables. The array processing in such languages is done one
element at a time, which is prohibitively slow for large matrices (see example
below). (Of course, FORTRAN90 and as C++ with appropriate matrix algebra
libraries allow writing computations like A*B for the matrices as well as scalar
variables, but these environments aren't common yet, either on Linux or on
commercial platforms.)

Typical C (HLL) code for doing a matrix multiply is as follows:

for(i=0 ; i<N ; i++)
 for(j=0 ; j<N ; j++)
 for(k=0 ; k<N ; k++)
 C[i][j] = A[j][k] * B[k][i]
 }
 }
 }

For Matlab/Octave (VHLL), the code looks like this:

C = A * B

The VHLL code is obviously easier to write. Also, in an interpretive language, the
loop iterations are interpreted one by one; in VHLL, the whole operation is
executed in machine code at full speed.

The term “Very High-Level Languages” refers to such problem domain-specific
languages. For numerical computation, there is a commercial VHLL called
Matlab. It provides a sophisticated environment for calculation and display of
numerical data, with array variables as first-class objects. It is a very nice toolkit
and is supported on Linux. Interestingly, there is a free clone of Matlab, called
Octave, that provides a large part of its functionality; Matlab code typically runs
unchanged in Octave. (See “Octave: A Free, High-Level Language for

Mathematics” by Malcolm Murphy, Linux Journal, July 1997.) Those systems are
addictive; once you use them for a while it is hard to go back to FORTRAN.

The above remarks are equally relevant on any OS platform, whether it is
different flavors of UNIX or even on Windows or Macintosh. However, Linux
provides the most complete software development environment. Various
native scripting systems exist on individual platforms: Visual Basic on Windows,
Hypercard and Metacard on a Macintosh; however, the commercial offerings
are never complete. For instance, Visual Basic requires a separate C compiler to
create binary extensions. On the other hand, Linux provides all the tools (Tcl/Tk
libraries and header files, GCC compiler, etc.) out of the box.

Resources

Przemek Klosowski is a physicist working at National Institute of Standards and
Technology. Since he stumbled onto the Internet 13 years ago, Linux 6 years
ago and founded Washington DC Linux User Group 4 years ago, he is beginning
to feel like an old geezer. This feeling is reinforced by his failure to get excited
by Java. Still, his youthful enthusiasm is maintained by the success of Linux and
other Open Software initiatives that he supports and sometimes contributes to.
He can be reached via e-mail at przemek@nist.gov.

Nick Maliszewskyj is a physicist at the NIST Center for Neutron Research in
Gaithersburg, MD, where he loves to play with the big toys to be found there.
His current mission is to write software that will let hordes of other people play
with them too. Activities in the non-binary world include Aikido, home repair,
watching his 3-year-old son with amazement and preparing for the arrival of his
second child. Nick can be reached by e-mail at nickm@nist.gov.

Bud Dickerson has always worked for physicists because they let him play with
cool toys. He sleeps too well at night, however to be any better with Linux than
he is. He can be reached at bud.dickerson@nist.gov.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/051/2596s1.html
mailto:przemek@nist.gov
mailto:nickm@nist.gov
mailto:bud.dickerson@nist.gov
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Global Position Reporting

Richard Parry

Issue #51, July 1998

Although the GPS was originally intended for use by the military, in peace time
it has given rise to applications that were heretofore limited to science fiction.

The Global Positioning System (GPS) has given rise to many unique applications
and is destined to make its mark among the technological wonders of the
world. The Automatic Position Reporting System (APRS) is an application that
uses the GPS to allow amateur radio operators to broadcast latitude, longitude,
heading, velocity and weather to remote receivers. Linux plays an important
role in this application by providing the gateway between wireless APRS LANs
and the Internet. This article provides an introduction to the GPS and APRS, and
describes how Linux is being used to develop a nationwide APRS backbone.
Also included is a list of hosts and web sites to which Linux users can connect
to obtain real-time position reports. I will also discuss the Linux applications
aprsmon, aprsd and PerlAPRS which take advantage of the power of Linux and
the Internet to extend the usefulness of the GPS.

When historians look back upon the engineering accomplishments of the
twentieth century, the Global Positioning System (GPS) is certain to be among
the top engineering wonders. It represents major accomplishments in
computer hardware and software, reliability, satellite technology, physics,
communication and electronic engineering. By any standard, it is a marvel and
a testament to the belief that mankind can accomplish anything the
imagination can think of.

As Arthur C. Clarke, science fiction author and “father” of the geosynchronous
satellite, once said, “Any sufficiently advanced technology is indistinguishable
from magic.” In many ways, that phrase describes the GPS perfectly—it is
magic. Although virtually everyone has heard of the GPS today, it wasn't always
this widely known. I remember being handed a small GPS receiver a few years
ago and being told that this little device would tell me where I was located
anywhere on earth. I could not believe it and was not prepared to be sucked

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

into this canard. How could this device, barely the size of a cellular phone, tell
me where I was located within a few hundred feet? It just couldn't be; this had
to be a hoax. Upon further discussion and a demonstration, I was hooked; I
knew I had to have one, but wasn't sure why. When the Automatic Position
Reporting System (APRS) was being developed, I knew I had found my excuse.

The Automatic Position Reporting System is one of the peacetime applications;
it unites the GPS with amateur radio. APRS is one of the most popular facets of
amateur radio today, and Linux supports APRS with several unique
applications. For example, if you wish to know the location of a float in the Rose
Bowl parade or the location of the Olympic Torch, APRS can provide that
information.

APRS

The Automatic Position Reporting System allows amateur radio operators to
send and receive position reports obtained from either a GPS receiver or a
known fixed position. (See APRS Formats.) In fixed-position applications, radio
frequency packet transmissions are broadcast from a stationary location such
as a building or home. Since the station is fixed, there is no need for a GPS
receiver to continually update its position. More interesting are mobile
applications in which vehicles are tracked.

APRS Formats

Most GPS receivers have a graphic liquid crystal display (LCD) which is normally
attached to the dash of the car for easy viewing. A cable connects the internal
GPS receiver to an external antenna. The external antenna is important since it
provides better reception. Although a GPS receiver provides visual information
to the occupants of the vehicle, virtually all GPS units provide an RS-232/4800
baud connection to allow the receiver to connect to an external device such as
a laptop computer. However, for APRS applications, we are interested in
broadcasting our position to the wireless APRS network. Therefore, the serial
output of the GPS receiver is connected to a terminal node controller (TNC),
which acts like a modem and changes the digital data stream to analog tones.
The tones are then fed into a transmitter which broadcasts packets containing
GPS position information. This configuration is shown in Figure 1.

Figure 1. GPS Configuration

Figure 2. GPS Satellite Antenna and Mr. Parry

Figure 2 shows an example of a tracker. Here, an ordinary automobile is shown
with some not-so-ordinary equipment attached to the trunk. The object of
interest, located in the center of the trunk, is a GPS satellite antenna. Also

https://secure2.linuxjournal.com/ljarchive/LJ/051/2697s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f2.jpg

shown is a vertical whip antenna, used to broadcast APRS packets from a
transmitter located within the vehicle. A second vertical whip antenna is used
for voice communication. Pay no attention to the man behind the curtain (i.e.,
leaning on the car).

APRS Servers

There is currently a nationwide effort to provide the information received by
local APRS LANs to the Internet. This is done using APRS servers which provide
live APRS traffic to the Internet. By using a simple TELNET client, one can
connect to a server and see the information that is being collected throughout
the United States. Several APRS servers are available for different operating
systems. For Linux users, there are presently two APRS servers available:
aprsmon and aprsd.

The aprsmon server can be found at http://www.cloud9.net/~alan/ham/aprs/;
aprsd can be found at http://www.wa4dsy.radio.org/Files/aprsd.beta101.tar.gz.
APRS servers allow users to connect and examine remote APRS networks
located in several metropolitan areas. The nationwide network of servers is
expanding with the ultimate goal of allowing one to locate mobile trackers
anywhere in the U.S. To better understand the information provided by these
servers, try a TELNET session to any of the addresses listed below. The numeric
value after the host name is the port number and is required.

• kb2ear.aprs.net 14579 (Northern NJ)
• kb2ear.aprs.net 6261 (USA)
• kb2ear.aprs.net 14580 (Composite of above)
• www.wa4dsy.radio.org 14579 (Atlanta, GA)
• socal.aprs.net 14579 (Southern CA)
• www.aprs.net 10151 (USA Composite)
• www.aprs.net 14579 (Southeast FL)
• sboyle.slip.netcom.com 14579 (San Francisco, CA)

The information returned from these TELNET sessions is real-time raw data
that is broadcast by amateur radio operators at intervals from 1 to 30 minutes.
The short duration broadcasts (e.g., one minute) are intended for mobile
(tracker) applications where there is movement and therefore a need for
frequent updates. The longer duration broadcasts (e.g., 30 minutes) are
intended for fixed stations (homes) broadcasting their locations. These servers
provide packets which include the position of the transmitting station's latitude,
longitude and often a brief message about the station. Listing 1 is the output
from a typical APRS TELNET session.

https://secure2.linuxjournal.com/ljarchive/LJ/051/2697l1.html

Each line of text in Listing 1 is a packet that contains the amateur radio call sign
of the source station, the destination address and any repeaters used in the
path. For example, in the first packet shown after the login message, W4DUF is
broadcasting to all stations in the APRS network. Due to distance limitations
(typically a few miles), other local stations along the route, called digipeaters
(digital repeaters), are used to extend the distance by repeating the packet. In
the example, stations N4TKT-2, WIDE and N4NEQ-2 are being used to repeat
the packet. In this way, distances can be extended to a large metropolitan area
(i.e., a 20 mile radius), as well as across the nation by using special high
frequency (HF) digipeaters called GATEs. Due to limited RF bandwidth,
broadcasting positions nationally is typically limited to special events such as
tracking the Olympic torch as it traveled across the U.S.

Figure 3. APRS WWW Page

With the development of a nationwide APRS backbone using the Internet,
transmitting local APRS traffic can bypass the constraints of limited HF
bandwidth. An APRS TELNET session as shown in Listing 1 is interesting, but
difficult to understand due to the raw format of the information. To better
understand the data being presented, graphically formatted web pages are
used. These web sites take the raw information and overlay the location of the
stations on a map. Figure 3 is an example of a typical APRS web page. The list of
web sites below shows real-time or near real-time (delayed 15 minutes) APRS
traffic and requires a Java-enabled Net browser.

• http://www.wa4dsy.radio.org/aprs/usa.html (Entire US)
• http://www.wa4dsy.radio.org/aprs/soeast.html (Southeastern US)
• http://www.wa4dsy.radio.org/aprs/ga-atl.html (Atlanta, GA)
• http://www.aprs.net/sfl.html (Southern Florida)
• http://sboyle.slip.netcom.com/LIDSAPRS.html (San Francisco, CA)

PerlAPRS

As we have seen, APRS servers provide raw data, and web browsers can show
the information in a graphically interesting and informative manner. However,
both are passive applications that require a user.

For many applications, it would be nice to automate the system to perform a
specified task automatically. For example, you might wish to be informed by e-
mail that the lead float in the Rose Bowl Parade has reached a specific point in
the route. Or perhaps you have a mobile tracker and wish to sound an alarm
when the tracker reaches a specific location. For this application, you need a
program that will examine the raw APRS data and execute a command based
on user-specified criteria. This is exactly what PerlAPRS does, and Linux is the

https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f3.jpg

perfect platform for this type of application since it supports multitasking so
well.

PerlAPRS examines incoming packets and executes a command when a call
sign and location match the criteria specified by the user. Location criteria is
specified using grid squares, a rectangular area measuring approximately 2.5
by 5 miles.

The best way to understand how PerlAPRS works is to look at an example. The
line numbers shown in the left-hand column below are provided for illustrative
purposes and are not part of the normal output. Line 1 shows an example
packet. PerlAPRS parses the packet and extracts the call sign, latitude and
longitude. Line 2 displays the call sign as KD6AZU, the latitude as 3243.700 (32
degrees, 43.700 minutes North) and the longitude as 11707.700 (117 degrees,
7.700 minutes West). Next, PerlAPRS searches a call sign file, previously
customized by the user, looking for a match. The first two attempts at a match
shown on lines 3 and 4 fail. The third comparison shown on lines 5 and 6 is
successful. This match causes the command, cmd3.sh, to be executed. The
command may be any UNIX-style command; however, simple shell scripts are
used for most applications.

1. Packet= KD6AZU>APRS,KD4DLT-7,N4NEQ-2,WIDE*:
@042327/3243.70N/11707.70W/0
2. KD6AZU 3243.700 11707.700
3. - KI6MP-10 DM12JV
4. - KC6VVT-9 DM12IT
5. * KD6AZU DM12KR Sun Aug 10 15:56:13 1997 3
6. Sun Aug 10 15:57:13 1997 1 cmd3.sh

This brief discussion of PerlAPRS is intended to provide a simple overview. The
program provides several additional features intended for real time
applications. PerlAPRS is distributed under the GNU licensing agreement. The
source code and further information on the program can be found at http://
people.qualcomm.com/rparry/perlAPRS/.

GPS Primer

Linux, amateur radio and the APRS protocol are only part of the system we
have discussed so far. The GPS is truly what makes the system practical.
Although the details of the GPS are extremely complex, the basic idea is
relatively simple. Triangulation is used to pinpoint a receiver.

For example, assume you and your friend both have accurate synchronized
clocks. At some unknown distance from you, she yells, “It is now 6:00 and 0.000
seconds.” When you hear her, your clock shows the time as 6:00 and 0.333
seconds. You can now compute your distance from her as 100 meters by
multiplying the speed of sound (300 meters per second) by the elapsed time
(0.333 seconds). With this single test point, you are able to compute your

distance from the source. Specifically, you are located in any direction 100
meters from your friend. This scenario is shown in Figure 4A by the multiple
dots located on the circumference of the circle.

Figure 4. How GPS Works

With a second friend, we can further clarify our position. In Figure 4B, a friend
at point Y, also with an accurate clock, takes another measurement. Again you
make the computation and find the distance from this friend. You now have
your position narrowed to two points shown by the two dots where the circles
intersect. Using a third friend at point Z and another measurement, you are
able to pinpoint your exact location.

The GPS works on a similar principle; however, the speed of light replaces the
speed of sound in the experiment, and your friends are replaced by satellites.
In the above explanation we have conveniently assumed that the world is flat to
provide a clearer understanding of the concept. When the concept is extended
to three dimensions, a single measurement does not produce a circle as shown
in Figure 4A, but a sphere. A second measurement does not limit our position
to two unique locations as shown in Figure 4B, but a circle that is the
intersection of two spheres. Last, a third measurement does not yield a unique
location as shown in 4C, but two points which are the intersection of three
spheres. Thus, with three measurements, we have two possible locations. The
good news is that one of the points can be eliminated since it corresponds to a
position above the Earth's atmosphere. So unless you are an astronaut, your
unique location on earth has been found with only three measurements.

We made a second convenient assumption, specifically that all parties in the
experiment had accurate clocks. Although the GPS satellites have accurate
atomic clocks, the receiver on the ground does not have such a luxury, nor
would it be practical. Fortunately, by adding a fourth satellite, the person on the
ground does not require an atomic clock. This is a simple algebraic problem in
four unknowns: latitude, longitude, altitude and time. With four satellites we
can solve for all four unknowns and provide an accurate and unique position
for the listener on Earth. The experienced GPS user may argue that he has
obtained accurate positions with only three satellites. This is true; it is done by
letting the GPS receiver assume the altitude is 0 (sea level). Therefore, if we are
willing to give up knowing our altitude, which is valid in many applications, the
GPS can indeed provide an accurate position using only three satellites, since
we have three unknowns and three equations.

GPS Accuracy

The above explanation is in many ways an oversimplification. In real life,
numerous variables affect the accuracy of the system. For example, radio

https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2697f4.jpg

frequency transmissions are affected by objects such as buildings and trees.
These structures cause reflections, referred to as multi-path. Signals from the
satellites are reflected off nearby structures, causing delays which ultimately
affect the accuracy of the measurement. Radio frequencies are also affected by
rain, sleet, snow, humidity and even the temperature of the air, since the speed
of the transmission is affected as well as the attenuation of the signal. All of
these variables result in loss of accuracy. However, these inaccuracies are small
compared with the deliberate error called Selective Availability (SA).

To understand SA, we must understand that GPS applications fall into two
service categories: the Standard Positioning Service (SPS) for civilians, and the
Precise Positioning Service (PPS) for military and authorized personnel. PPS GPS
receivers remove the adverse affects of SA and are therefore far more
accurate. SPS GPS receivers provide less accuracy than the GPS is capable of,
and each is generally limited to an accuracy of 100 meters. However, there are
ways of overcoming the limitations of SPS receivers by using Differential GPS
(DGPS). For those interested in DGPS, the web is an excellent source of further
information.

Conclusion

The world has not been the same since the invention of the telephone, radio,
television and the computer. The GPS is also destined to make its mark in the
technological evolution of mankind; it has given rise to many unique
applications. The APRS was developed to allow amateur radio operators to
broadcast positions using packet radio. APRS servers and Linux further extend
the GPS to uses that were science fiction not too long ago.

Resources

Richard Parry works as a software engineer at Qualcomm, Inc., known by most
as the home of the e-mail program Eudora. He attends the University of
California at San Diego and studies computer science. When not sitting in front
of a monitor, he plays racquetball, but does entirely too much of the former
and not enough of the latter. He can be reached at rparry@qualcomm.com or
visit his home page at http://people.qualcomm.com/rparry/.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/051/2697s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Javalanche: An Avalanche Predictor

Richard Sevenich

Rick Price

Issue #51, July 1998

This article introduces a prototypical avalanche-predicting software package
implemented with a Fuzzy Logic algorithm.

Javalanche is prototypical in the sense that the current model is too sparse and
naive for practical avalanche prediction. Nevertheless, it suggests that Fuzzy
Logic may be an appropriate tool for such an application, upon significant
enhancement of the model presented here. The software was developed using
Java in a Debian/GNU Linux environment. Graphs were created using gnuplot.

Variables for Avalanche Prediction

Evaluating avalanche hazard relies on gathering meaningful data from a large
number of variables including slope aspect and angle, wind load and direction,
terrain roughness, snow crystal forms present in the snowpack, snowpack layer
resistances, the layering effect of strong over weak zones, current temperature
and temperature history, and recent snowfall depth and water content. It is
noteworthy that both long-term and current variables belong in any usable
model, that some factors are interrelated and that a factor may or may not play
a predominant role at some particular time.

To be practical, the values of the input variables should be relatively
straightforward to measure in environments ranging from tamed ski areas to
untamed wilderness. Many of the typical assessment tools are qualitative but
have proved their worth. Snow layers can be assessed by digging a snow pit
and examining the pit walls for snow crystal forms, temperatures and layer
resistances. A common method for assessing snow layer resistance is a hand
test which measures the level of resistance the snow layer presents to
penetration. These levels are categorized as fist, four finger, one finger, pencil
and knife in order of increasing resistance. This aids in determining the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

existence of a buried instability. A technique for assessing the amount of
surface snow that can be transported by wind is the foot penetration test. The
tester steps on the snow with one foot and measures the penetration, with
30cm being considered enough to suggest a potential hazard. A refinement
would attempt to factor in the weight and foot area of the tester. There are
other such tests. Slope aspect is the compass direction the slope faces. Its
hazard effect will be influenced by wind direction and exposure to the sun. The
latter influence varies with the time of year. A good web site related to these
issues with links to other sites is the Cyberspace Snow and Avalanche Center at
http://www.csac.org/.

The bottom line is that a reasonably useful model will employ many variables,
need extensive testing and refinement and require significant input from
experienced avalanche personnel. It is clearly easier to apply the model in a
developed ski area rather than in the back country. The computer models of
which we are aware are mechanistic in nature, e.g., there is European work
using finite element analysis. We feel that Fuzzy Logic is an appropriate tool
and advance this article to explain the approach. We stress at the outset that
this paper is expository and the model presented is not yet usable in a practical
setting. However, we would approach a mature model by including new
variables one at a time and testing the resulting software. Further, we have not
even chosen the most important variables, but rather a handful that are easily
understood.

Essential Elements of Fuzzy Logic

Articles and books describing Fuzzy Logic are widely available, as a cursory web
search will quickly confirm. We recommend Earl Cox's book as a first, practical
exposure (The Fuzzy Systems Handbook, AP Professional, 1994). First devised
by Lotfi Zadeh (“Fuzzy Sets”, Information and Control, Volume 8, 338-353, 1965),
Fuzzy Logic is best known for its applications in industrial control. However, it is
also quite successfully used in decision-making applications, which is the basis
of our project.

Fuzzy Logic is particularly appropriate in situations where a mathematical
model is either unavailable or too unwieldy and where human expertise
gleaned from experience and supported by intuition is available. In particular, it
emulates the human reasoning process and employs linguistic forms in its
modeling process. For this article the first author is the Fuzzy Logic
programmer, and the second author provides the avalanche expertise.

In this article, we will introduce Fuzzy Logic via our problem space. This
approach will give you insight into the concepts via a somewhat detailed

example application. However, the scope of this article does not allow us to
present Fuzzy Logic formally, nor in its full richness.

The minimal ingredients of a Fuzzy Logic model include these elements:

• One or more input variables
• A family of fuzzy sets for each input variable
• One or more output variables
• A family of fuzzy sets for each output variable
• A group of rules connecting input and output variables

There are also algorithms which are applied to the model:

• Fuzzification of crisp input variables
• Application of the rules
• Defuzzification of rule results to achieve crisp outputs

The terminology embedded in the preceding two lists will become familiar as
we work through the Avalanche Predictor example.

The Fuzzy Sets for the Javalanche Model

The model is to be applied when there has been snowfall during the last 24-
hour period. There are three input variables:

• Slope_Pitch, the average slope angle (degrees) in the region of the
suspected avalanche danger

• Water_Equiv, the snowfall's water content (centimeters of equivalent
water)

• Current_Temp, the current temperature (Celsius)

To introduce fuzzy sets, we'll start with the input variable, Slope_Pitch. Wild
slopes do not, of course, have constant pitch and even a measurement of
average pitch is approximate. Nor is it clear that the distinction between a
number like 15.2 degrees and 17.3 degrees is all that useful. Fuzzy sets provide
a way to incorporate that inherent fuzziness into a model. We somewhat
arbitrarily classify the Slope_Pitch variable into four categories, based loosely
on the corresponding skiing ability needed to competently negotiate the
terrain. These categories are Novice, Intermediate, Advanced and Expert.

Figure 1. Fuzzy Set for Novice Slope_Pitch

Figure 2. The Four Fuzzy Sets for Slope_Pitch

https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f2.jpg

There is no widely accepted ski industry standard for these terms, but there is
an approximate agreement on what they imply. For example, most skiers
would consider the pitch range of 0 to 10 degrees as Novice, but there would
be less agreement on the angle at which the slope would be considered no
longer Novice, but Intermediate. Fuzzy Logic would accommodate this
uncertainty by defining a fuzzy set for novice slope pitch as shown in Figure 1,
where the vertical axis is called the degree of membership (dom). In Figure 2,
the fuzzy sets for Intermediate, Advanced and Expert are incorporated as well.
Looking at Figure 2, an input Slope_Pitch of 17.5 degrees would have a degree
of membership of 0.25 in the Novice category and of 0.75 in the Intermediate
category, reflecting the fuzzy transition from Novice to Intermediate
Slope_Pitch. Ascertaining the doms of the various input values is called the
fuzzification process.

Figure 3. The Three Fuzzy Sets for Water_Equiv

Figure 4. The Three Fuzzy Sets for Current_Temp

Figures 3 and 4 show fuzzy set choices for the other two input variables,
Water_Equiv and Current_Temp. The choices of fuzzy set ranges and shapes are
somewhat arbitrary, but should be guided by the knowledge of the expert.
From Figures 2, 3, and 4 we see that the model has the following sets:

• Four fuzzy sets for Slope_Pitch
• Three fuzzy sets for Water_Equiv
• Three fuzzy sets for Current_Temp

There is only one output variable, Avalanche_Danger. It is scaled from 0 to 100.
It is tempting to interpret this as the probability of avalanche, but at this current
stage of development it is an arbitrary scale. If the model were significantly
enhanced and then used both extensively and successfully, this parameter
could be calibrated and perhaps be rather like a probability. Figure 5 depicts
the four fuzzy set categories for Avalanche_Danger.

Figure 5. The Four Fuzzy Sets for Avalanche_Danger

Note that the expert snow scientist must be consulted by the programmer to
construct the fuzzy sets. It can be expected that these would be modified and
additional inputs incorporated as experience with the model is gained.

The Rules for the Javalanche Model

Rules come in both conditional and unconditional varieties. For Javalanche, only
conditional rules are currently implemented. A typical rule might be “If
Water_Equiv is Small AND Slope_Pitch is Novice AND Current_Temp is

https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f5.jpg

Below_Freezing, then Avalanche_Danger is Low.” The if clause (antecedent) of
the rule contains input fuzzy sets, while the then clause (consequent) contains
output fuzzy sets. Each of the rules here links three fuzzy sets in the antecedent
with the “AND” conjunction. Each consequent involves a single output fuzzy set.

Figure 6. Rules for Current_Temp = Below_Freezing

Figure 7. Rules for Current_Temp = Near_Freezing

Figure 8. Rules for Current_Temp = Above_Freezing

Recall that the multiplicity of fuzzy sets for the three input variables is 4, 3 and
3, so that the total number of rules is the product, 36. Rather than quote each
of the 36 rules, we represent them with the three tables shown in Figures 6, 7
and 8. Extracting a rule from a table is straightforward. The table entries show
Avalanche_Danger for two inputs, Water_Equiv (row) and Slope_Pitch (column)
while the third input is contained in the figure label. For example, in Figure 6,
the upper left corner entry is “Low” and the corresponding inputs are:

• Water_Equiv = Small (row)

https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2710f6.jpg

• Slope_Pitch = Novice (column)
• Current_Temp = Below_Freezing (Figure 6's label)

Hence the related rule is, “If Water_Equiv is Small AND Slope_Pitch is Novice
AND Current_Temp is Below_Freezing, then Avalanche_Danger is Low”; the
same rule quoted earlier.

Just as for the fuzzy sets, the expert snow scientist must be consulted by the
programmer in order to compose adequate rules. As with the fuzzy sets,
experience with applying the model in the real world will most likely result in
adjustments to the rules.

A Sample Calculation

To see how a Fuzzy Logic algorithm works, we'll make an example calculation.
Of course, such calculations are done by the program, but hand calculations
are essential for understanding and for debugging the program. The steps we'll
go through are:

1. Start with three crisp input values.
2. Fuzzify those three values.
3. Evaluate the appropriate rules from the 36 available, obtaining fuzzy

outputs.
4. Defuzzify the outputs to obtain a crisp output.

Let's say we have measured/estimated the three input variables to be
Slope_Pitch = 17 degrees, Water_Equiv = 5 centimeters, and Current_Temp = 3
Celsius. These are the crisp values.

To fuzzify an input variable means finding its doms in all its fuzzy sets. Using
Figure 2, we find that Slope_Pitch has these doms in its fuzzy sets:

• Novice dom = 0.3
• Intermediate dom = 0.7
• Advanced dom = 0.0
• Expert dom = 0.0

Similarly, from Figure 3, the Water_Equiv values are

• Small dom = 0.0
• Medium dom = 1.0
• Big dom = 0.0

Last, from Figure 4, the Current_Temp values are:

• Below_Freezing dom = 0.0
• Near_Freezing dom = 0.5
• Above_Freezing dom = 0.5

This completes the fuzzification process.

After fuzzification, the rules are evaluated. Not all the rules will apply in each
instance. In particular, if any of the three inputs has a dom = 0.0, then that rule
does not apply. From the preceding dom calculation we see that two fuzzy sets
for Slope_Pitch, one fuzzy set for Water_Equiv, and two fuzzy sets for
Current_Temp have nonzero dom values. Consequently, four (= 2x1x2) rules
apply; namely, the first two in the middle row of Figure 7 and the first two in the
middle row of Figure 8.

We'll continue our sample calculation by evaluating only one of the four rules.
Let's consider the rule that has a consequence of Moderate Avalanche_Danger,
from Figure 7: “If Water_Equiv is Medium AND Slope_Pitch is Intermediate AND
Current_Temp is Near_Freezing, then Avalanche_Danger is Moderate.”

To evaluate this rule, we combine the doms of the antecedent fuzzy sets by
forming their product:

• Slope_Pitch has Intermediate dom = 0.7
• Water_Equiv has Medium dom = 1.0
• Current_Temp has Near_Freezing dom = 0.5

The product = 0.35 is then assigned to the output, i.e., the Avalanche_Danger
value has a dom of 0.35 in the Moderate fuzzy output set. Using the product of
the doms to combine the fuzzy sets joined by the AND conjunction is called the
“product AND”. Fuzzy Logic allows other choices (see Cox's book).

The other three rules which apply in our case must also be evaluated. We won't
do those calculations here—they are quite similar to the evaluation of the first.
Note that of the four rules that apply, two have a consequence of Moderate
and two have a consequence of Low. We choose to combine the dom values for
the Low fuzzy set by adding them together, thus allowing each rule that fires to
have an effect. We do the same thing for the Moderate doms. This is often
done in decision-making problems, but is not the only option possible (again,
see Cox's book). Hence, we now have these dom values for Avalanche_Danger:

• Low = 0.3
• Moderate = 0.7

• High = 0.0
• Spontaneous = 0.0

These dom values are then “defuzzified”, as in Figure 5. After looking at the
figure with these dom values, it seems reasonable to conclude that the
resultant number will be between 10.0 and 20.0, and because the Moderate
dom is stronger, it ought to be closer to 20.0 than to 10.0. In practice, we use a
weighted average known as the “center of gravity”, and it yields 19.0 for this
case. We won't do the detailed calculation here.

Thus, for our sample calculation, the input values of Slope_Pitch = 17 degrees,
Water_Equiv = 5 centimeters, and Current_Temp = 3 have led to an output
value of Avalanche_Danger = 19.0, a value mostly in the Moderate region, but
with some membership in the Low region.

An Overview of the Software

The software is available via anonymous FTP from ftp://turing.sirti.org/pub/ras/
fuz3.tar.gz. When unzipped and unarchived, it will produce a directory tree with
fuz3 as the top node. The top node contains a README file, enabling a user to
both use and modify the package. To execute the software, it is assumed that
the user's machine has Java properly installed. We used JDK1.1.1.

In the lowest subdirectory, io_n_sets, three files contain the fundamental
classes chosen for the model, as follows:

• ioput.java contains a class for input and output variables.
• fz_set.java contains a class for the fuzzy sets.
• cond_rule contains a class for the conditional rules.

These classes contain no information specific to the avalanche prediction
model.

The parent directory of io_n_sets is init_n_run which contains two source files of
interest: make_init_file.java and run_eng.java. The first of these creates an
initialization file, fz_init.dat, which is read by run_eng.java to initialize its Fuzzy
Logic “engine”. Only make_init_file.java contains the model for the avalanche
predictor. Hence, it may be modified to apply the software to other decision-
making problems. As expected, after initializing itself, run_eng.java requests the
input variable selection from the user, then runs the Fuzzy Logic engine and
produces an output result.

The software can be executed from a terminal window in the X Window System
environment by entering the command:

appletviewer run_eng.html

Possible Future Work

Here we discuss two topics as possible improvements:

• Refining and extending the Javalanche application
• Replacing make_init_file.java with a user language and translator

To refine and extend the Javalanche application would require field testing and
model refinement/enhancement by an active avalanche control group. The
earlier portion of this paper identified various other important input
parameters which we will investigate. Even if this does not prove feasible, we
believe we have made a case for the use of Fuzzy Logic in avalanche prediction.

The approach using make_init_file.java serves to isolate/modularize the specific
application, but is not user-friendly. A preferable approach is to allow a user to
employ a simple editor to create a text file containing the application-specific
details. This is to be written in a language designed specifically for this purpose
(a user-specific language). This is then run through the translator whose output
is an initialization file, functionally similar to fz_init.dat. The translator can
provide a very important feature not provided by make_init_file.dat. In
particular, the translator will check the text file written by the user for any
errors which are not intrinsically run-time errors. This could then be used by an
avalanche control group whose personnel need not be programmers and must
merely learn a descriptive text modeling system based on terms familiar to
them.

The translator could also produce a second set of files appropriate for
producing graphical views (e.g., using gnuplot) of the fuzzy sets for the user.
The designing, implementation, and testing of the translator will most likely be
assigned as a homework project for students in the compiler design course at
Eastern Washington University. This task could be accomplished in a
straightforward manner using flex and bison, compiler construction tools
available within Linux. There are also Java versions of these tools for Linux
which may be mature by now.

Richard Sevenich (rsevenich@ewu.edu) is a Professor of Computer Science at
Eastern Washington University in Cheney, WA. He is also a part-time ski
patroller at Schweitzer Mountain near Sandpoint, Idaho. His computer science

mailto:rsevenich@ewu.edu

interests include Fuzzy Logic, Application-Specific Languages and Parallel,
Distributed, Real-time Industrial Control. He is an enthusiastic user of Debian/
GNU Linux.

Rick Price has avalanche control and prediction experience from his many years
of work as a full-time ski patroller at Schweitzer Mountain. He typically keeps an
active log of the snowpack conditions and history, supported by field data such
as snowpack and avalanche records. Over the years he has attended various
avalanche courses and clinics. More recently, Rick has become a middle school
teacher in the Bonner County School District in Idaho, retaining a part-time
involvement with the Schweitzer Ski Patrol. He can be reached at
debbyprice@hotmail.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:debbyprice@hotmail.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

ROOT: An Object-Oriented Data Analysis Framework

Fons Rademakers

Rene Brun

Issue #51, July 1998

A report on a data analysis tool currently being developed at CERN.

ROOT is a system for large scale data analysis and data mining. It is being
developed for the analysis of Particle Physics data, but can be equally well used
in other fields where large amounts of data need to be processed.

After many years of experience in developing interactive data analysis systems
like PAW and PIAF (see Resources), we realized that the growth and
maintainability of these products, written in FORTRAN and using 20-year-old
libraries, had reached its limits. Although still popular in the physics
community, these systems do not scale up to the challenges offered by the next
generation particle accelerator, the Large Hadron Collider (LHC), currently
under construction at CERN, in Geneva, Switzerland. The expected amount of
data produced by the LHC will be on the order of several petabytes (1PB =
1,000,000GB) per year. This is two to three orders of magnitude more than
what is being produced by the current generation of accelerators.

Therefore, in early 1995, Rene Brun and I started developing a system,
intending to overcome the deficiencies of these previous programs. One of the
first decisions we made was to follow the object-oriented analysis and design
methodology and to use C++ as our implementation language. Although all of
our previous programming experience was in FORTRAN, we soon realized the
power of OO and C++, and after some initial “throw-away” prototyping, the
ROOT system began to take shape.

In November 1995, we gave the first public presentation of ROOT at CERN and,
at the same time, version 0.5 was released via the Web. By then, Nenad Buncic
and Valery Fine had joined our team.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Since the initial release, there has been a constantly increasing number of
users. In response to comments and feedback, we've been regularly releasing
new versions containing bug fixes and new features. In January 1997, version
1.0 was released and in March 1998 version 2.0. Since the release of version
1.0, more than 9,300 copies of the ROOT binaries have been downloaded from
our web site, about 500 people have registered as ROOT users, and the web
site gets up to 100,000 hits per month.

ROOT is currently being used in many different fields such as physics,
astronomy, biology, genetics, finance, insurance, pharmaceuticals, etc.

The source and binaries for many different platforms can be downloaded from
the ROOT web site (http://root.cern.ch/). The current version can be used and
distributed freely as long as proper credit is given and copyright notices are
maintained. For commercial use, the authors would like to be notified.

Main Features of ROOT

The main components of the ROOT system are:

• A hierarchical object-oriented database (machine independent, highly
compressed, supporting schema evolution and object versioning)

• A C++ interpreter
• Advanced statistical analysis tools (classes for multi-dimensional

histogramming, fitting and minimization)
• Visualization tools (classes for 2D and 3D graphics including an OpenGL

interface)
• A rich set of container classes that are fully I/O aware (list, sorted list, map,

btree, hashtable, object array, etc.)
• An extensive set of GUI classes (windows, buttons, combo-box, tabs,

menus, item lists, icon box, tool bar, status bar and many others)
• An automatic HTML documentation generation facility
• Run-time object inspection capabilities
• Client/server networking classes
• Shared memory support
• Remote database access, either via a special daemon or via the Apache

web server
• Ported to all known UNIX and Linux systems and also to Windows 95 and

NT

The complete system consists of about 450,000 lines of C++ and 80,000 lines of
C code. There are about 310 classes grouped in 24 different frameworks, each
class represented by its own shared library.

The CINT C/C++ Interpreter

One of the key components of the ROOT system is the CINT C/C++ interpreter.
CINT, written by Masaharu Goto of Hewlett Packard Japan, covers 95% of ANSI
C and about 85% of C++. Template support is being worked on, and exceptions
are still missing. CINT is complete enough to be able to interpret its own 70,000
lines of C and to let the interpreted interpreter interpret a small program.

The advantage of a C/C++ interpreter is that it allows for fast prototyping, since
it eliminates the typical time consuming edit/compile/link cycle. Once a script or
program is finished, you can compile it with a standard C/C++ compiler (gcc) to
machine code and enjoy full machine performance. Since CINT is very efficient
(for example, for/while loops are byte-code compiled on the fly), it is quite
possible to run small programs in the interpreter. In most cases, CINT
outperforms other interpreters like Perl and Python.

Existing C and C++ libraries can easily be interfaced to the interpreter. This is
done by generating a dictionary from the function and class definitions. The
dictionary provides CINT with all necessary information to be able to call
functions, create objects and call member functions. A dictionary is easily
generated by the program rootcint that uses the library header files as input
and produces a C++ file containing the dictionary as output. You compile the
dictionary and link it with the library code into a single shared library. At run-
time, you dynamically link the shared library, and then you can call the library
code via the interpreter. This can be a very convenient way to quickly test some
specific library functions. Instead of having to write a small test program, you
just call the functions directly from the interpreter prompt.

The CINT interpreter is fully embedded into the ROOT system. It allows the
ROOT command line, scripting and programming languages to be identical. The
embedded interpreter dictionaries provide the necessary information to
automatically create GUI elements like context pop-up menus unique for each
class and for the generation of fully hyperized HTML class documentation.
Furthermore, the dictionary information provides complete run-time type
information (RTTI) and run-time object introspection capabilities.

Installation

The binaries and sources of ROOT can be downloaded from http://root.cern.ch/
root/Version200.html. After downloading, uncompress and unarchive (using
tar) the file root_v2.00.Linux.2.0.33.tar.gz in your home directory (or in a
system-wide location such as /opt). This procedure will produce the directory /
root. This directory contains the following files and subdirectories:

• AA_README: read this file before starting

• bin: directory containing executables
• include: directory containing the ROOT header files
• lib: directory containing the ROOT libraries (in shared library format)
• macros: directory containing system macros (e.g., GL.C to load OpenGL

libs)
• icons: directory containing xpm icons
• test: some ROOT test programs
• tutorials: example macros that can be executed by the bin/root module

Before using the system, you must set the environment variable ROOTSYS to
the root directory, e.g., export ROOTSYS=/home/rdm/root, and you must add
$ROOTSYS/bin to your path. Once done, you are all set to start rooting.

First Interactive Session

In this first session, start the ROOT interactive program root. This program
gives access via a command-line prompt to all available ROOT classes. By typing
C++ statements at the prompt, you can create objects, call functions, execute
scripts, etc. Go to the directory $ROOTSYS/tutorials and type:

bash$ root
root [0] 1+sqrt(9)
(double)4.000000000000e+00
root [1] for (int i = 0; i < 5; i++)<\n>
printf("Hello %d\n", i)
Hello 0
Hello 1
Hello 2
Hello 3
Hello 4
root [2] .q

As you can see, if you know C or C++, you can use ROOT. No new command-line
or scripting language to learn. To exit, use .q, which is one of the few “raw”
interpreter commands. The dot is the interpreter escape symbol. There are also
some dot commands to debug scripts (step, step over, set breakpoint, etc.) or
to load and execute scripts.

Let's now try something more interesting. Again, start root:

bash$ root
root [0] TF1 f1("func1", "sin(x)/x", 0, 10)
root [1] f1.Draw()
root [2] f1.Dump()
root [3] f1.Inspect()
 // Select File/Close Canvas
root [4] .q

Figure 1. Output of f1.Draw()

https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f1.jpg

Here you create an object of class TF1, a one-dimensional function. In the
constructor, you specify a name for the object (which is used if the object is
stored in a database), the function and the upper and lower value of x. After
having created the function object you can, for example, draw the object by
executing the TF1::Draw member function. Figure 1 shows how this function
looks. Now, move the mouse over the picture and see how the shape of the
cursor changes whenever you cross an object. At any point, you can press the
right mouse button to pop-up a context menu showing the available member
functions for the current object. For example, move the cursor over the
function so that it becomes a pointing finger, and then press the right button.
The context menu shows the class and name of the object. Select item
SetRange and put -10, 10 in the dialog box fields. (This is equivalent to
executing the member function f1.SetRange(-10,10) from the command-line
prompt, followed by f1.Draw().) Using the Dump member function (that each
ROOT class inherits from the basic ROOT class TObject), you can see the
complete state of the current object in memory. The Inspect function shows the
same information in a graphics window.

Histogramming and Fitting

Let's start root again and run the following two macros:

bash$ root
root [0] .x hsimple.C
root [1] .x ntuple1.C
 // interact with the pictures in the canvas
root [2] .q

Note: if the above doesn't work, make sure you are in the tutorials directory.

Figure 2. Output of ntuple1.C

Macro hsimple.C (see $ROOTSYS/tutorials/hsimple.C) creates some 1D and 2D
histograms and an Ntuple object. (An Ntuple is a collection of tuples; a tuple is a
set of numbers.) The histograms and Ntuple are filled with random numbers by
executing a loop 25,000 times. During the filling, the 1D histogram is drawn in a
canvas and updated each 1,000 fills. At the end of the macro, the histogram
and Ntuple objects are stored in a ROOT database.

The ntuple1.C macro uses the database created in the previous macro. It
creates a canvas object and four graphics pads. In each of the four pads, a
distribution of different Ntuple quantities is drawn. Typically, data analysis is
done by drawing in a histogram with one of the tuple quantities when some of
the other quantities pass a certain condition. For example, our Ntuple contains
the quantities px, py, pz, random and i. The command:

ntuple->Draw("px", "pz < 1")

https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f2.jpg

will fill a histogram containing the distribution of the px values for all tuples for
which pz < 1. Substitute for the abstract quantities used in this example
quantities such as name, sex, age, length, etc., and you can easily understand
that Ntuples can be used in many different ways. An Ntuple of 25,000 tuples is
quite small. In typical physics analysis situations, Ntuples can contain many
millions of tuples. Besides the simple Ntuple, the ROOT system also provides a
Tree. A Tree is an Ntuple generalized to complete objects. That is, instead of
sets of tuples, a Tree can store sets of objects. The object attributes can be
analyzed in the same way as the tuple quantities. For more information on
Trees, see the ROOT HOWTOs at http://root.cern.ch/root/Howto.html.

During data analysis, you often need to test the data with a hypothesis. A
hypothesis is a theoretical/empirical function that describes a model. To see if
the data matches the model, you use minimization techniques to tune the
model parameters so that the function best matches the data; this is called
fitting. ROOT allows you to fit standard functions like polynomials, Gaussian
exponentials or custom defined functions to your data. In the top right pad in
Figure 2, the data has been fit with a polynomial of degree two (red curve). This
was done by calling the Fit member function of the histogram object:

hprofs->Fit("pol2")

Moving the cursor over the canvas allows you to interact with the different
objects. For example, the 3D plot in the lower-right corner can be rotated by
clicking the left mouse button and moving the cursor.

The GUI Classes and Object Browser

Embedded in the ROOT system is an extensive set of GUI classes. The GUI
classes provide a full OO-GUI framework as opposed to a simple wrapper
around a GUI such as Motif. All GUI elements do their drawing via the TGXW
low-level graphics abstract base class. Depending on the platform on which you
run ROOT, the concrete graphics class (inheriting from TGXW) is either TGX11
or TGWin32. All GUI widgets are created from “first principles”, i.e., they use
only routines like DrawLine, FillRectangle, CopyPixmap, etc., and therefore, the
TGX11 implementation needs only the X11 and Xpm libraries. The advantage of
the abstract base class approach is that porting the GUI classes to a new, non
X11/Win32, platform requires only the implementation of an appropriate
version of TGXW (and of TSystem for the OS interface).

All GUI classes are fully scriptable and accessible via the interpreter. This allows
for fast prototyping of widget layouts.

The GUI classes are based on the XClass'95 library written by David Barth and
Hector Peraza. The widgets have the well-known Windows 95 look and feel. For

more information on XClass'95, see ftp://mitac11.uia.ac.be/html-test/
xclass.html.

Figure 3. ROOT Object Browser

Using the ROOT Object Browser, all objects in the ROOT system can be
browsed and inspected. To create a browser object, type:

root [0] TBrowser *b = new TBrowser

The browser, as shown in Figure 3, displays in the left pane the browse-able
ROOT collections and in the right pane the objects in the selected collection.
Double clicking on an object will execute a default action associated with the
class of the object. Double clicking on a histogram object will draw the
histogram. Double clicking on an Ntuple quantity will produce a histogram
showing the distribution of the quantity by looping over all tuples in the Ntuple.
Right clicking on an object will bring up a context menu (just as in a canvas).

Integrating Your Own Classes into ROOT

In this section, I'll give a step-by-step method for integrating your own classes
into ROOT. Once integrated, you can save instances of your class in a ROOT
database, inspect objects at run-time, create and manipulate objects via the
interpreter, generate HTML documentation, etc. A very simple class describing
some person attributes is shown in Listing 1. The Person implementation file
Person.cxx is shown in Listing 2.

The macros ClassDef and ClassImp provide some member functions that allow
a class to access its interpreter dictionary information. Inheritance from the
ROOT basic object, TObject, provides the interface to the database and
inspection services.

Now run the rootcint program to create a dictionary, including the special I/O
streamer and inspection methods for class Person:

bash$ rootcint -f dict.cxx -c Person.h

Next, compile and link the source of the class and the dictionary into a single
shared library:

bash$ g++ -fPIC -I$ROOTSYS/include -c dict.cxx
bash$ g++ -fPIC -I$ROOTSYS/include -c Person.cxx
bash$ g++ -shared -o Person.so Person.o dict.o

Now start the ROOT interactive program and see how we can create and
manipulate objects of class Person using the CINT C++ interpreter:

https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895l2.html

bash$ root
root [0] gSystem->Load("Person.so")
root [1] Person rdm(37, 181.0)
root [2] rdm.get_age()
(int)37
root [3] rdm.get_height()
(float)1.810000000000e+02
root [4] TFile db("test.root","new")
root [5] rdm.Write("rdm") // Write is inherited from the
TObject class
root [6] db.ls()
TFile** test.root
 TFile* test.root
 KEY: Person rdm;1
root [7] .q

Here, the key statement was the command to dynamically load the shared
library containing the code of your class and the class dictionary.

In the next session, we access the rdm object we just stored on the database
test.root:

bash$ root
root [0] gSystem->Load("Person.so")
root [1] TFile db("test.root")
root [2] rdm->get_age()
(int)37
root [3] rdm->Dump() // Dump is inherited from the TObject
class"
age 37 age of person
height 181 height of person
fUniqueID 0 object unique identifier
fBits 50331648 bit field status word
root [4] .class Person
[follows listing of full dictionary of class Person]
root [5] .q

A C++ macro that creates and stores 1000 persons in a database is shown in
Listing 3. To execute this macro, do the following:

bash$ root
root [0] .x fill.C
root [1] .q

This method of storing objects would be used only for several thousands of
objects. The special Tree object containers should be used to store many
millions of objects of the same class.

Listing 4 is a C++ macro that queries the database and prints all persons in a
certain age bracket. To execute this macro, do the following:

bash$ root
root [0] .x find.C(77,80)
age = 77, height = 10077.000000
age = 78, height = 10078.000000
age = 79, height = 10079.000000
age = 80, height = 10080.000000
NULL
root [1] find(888,895)
age = 888, height = 10888.000000
age = 889, height = 10889.000000
age = 890, height = 10890.000000
age = 891, height = 10891.000000

https://secure2.linuxjournal.com/ljarchive/LJ/051/2895l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895l4.html

age = 892, height = 10892.000000
age = 893, height = 10893.000000
age = 894, height = 10894.000000
age = 895, height = 10895.000000
root [2] .q

With Person objects stored in a Tree, this kind of analysis can be done in a
single command.

Finally, a small C++ macro that prints all methods defined in class Person using
the information stored in the dictionary is shown in Listing 5. To execute this
macro, type:

bash$ root
root [0] .x method.C
class Person Person(int a = 0, float h = 0)
int get_age()
float get_height()
void set_age(int a)
void set_height(float h)
const char* DeclFileName()
int DeclFileLine()
const char* ImplFileName()
int ImplFileLine()
Version_t Class_Version()
class TClass* Class()
void Dictionary()
class TClass* IsA()
void ShowMembers(class TMemberInspector& insp, char* parent)
void Streamer(class TBuffer& b)
class Person Person(class Person&)
void ~Person()
root [1] .q

The above examples prove the functionality that can be obtained when you
integrate, with a few simple steps, your classes into the ROOT framework.

Linux an Increasing Force in Scientific Computing

Analyzing the FTP logs of the more than 9,300 downloads of the ROOT binaries
reveals the popularity of the different computing platforms in the mainly
scientific community. Figure 4 shows the number of ROOT binaries downloaded
per platform.

Figure 4. ROOT Download Statistics

Linux is the clear leader, followed by the Microsoft platforms (Windows 95 and
NT together equal Linux). The results for the other UNIX machines should
probably be corrected a bit, since many machines are multi-user machines
where a single download by a system manager will cover more than one user.
Linux and Windows are typical single-user environments.

Summary

In this article I've given an overview of some of the main features of the ROOT
data-handling system. However, many aspects and features of the system

https://secure2.linuxjournal.com/ljarchive/LJ/051/2895l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895f4.jpg

remain uncovered, such as the client/server classes (the TSocket,
TServerSocket, TMonitor and TMessage classes), how to automatically generate
HTML documentation (using the THtml class), remote database access (via the
rootd daemon), advanced 3D graphics, etc. More on these topics can be found
on the ROOT web site.

Resources

Acknowledgements

Fons Rademakers received a Ph.D. in particle physics from the University of
Amsterdam. Since 1988 he has been working at CERN developing database,
data analysis and graphics software. Fons started using Linux in 1993 and has
been advocating it ever since. Besides developing ROOT, he is building several
Linux PC farms for physics data processing (a joint project with Hewlett
Packard). When not programming, he races go-carts and rides his trail bike. He
can be reached via e-mail at Fons.Rademakers@cern.ch.

Rene Brun received a Ph.D. from the University of Clermont-Ferrand, France.
He joined CERN in 1973. Rene made major contributions to the CERN Program
Library, creating and coordinating the development of major software projects
such as GEANT and PAW. In 1989, he received the IEEE/CANPS award for his
contribution to a general detector simulation framework for nuclear and
particle physics. He can be reached via e-mail at Rene.Brun@cern.ch.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/051/2895s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2895s2.html
mailto:Fons.Rademakers@cern.ch
mailto:Rene.Brun@cern.ch
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Glimpse of Icon

Clinton Jeffery

Shamim Mohamed

Issue #51, July 1998

This article gives a quick introduction to the programming language Icon,
developed at the University of Arizona.

Linux users are early adopters of new technology, so it's not surprising that
many in the Linux community wish to use the best programming language for a
given application, rather than being limited to just one language. The purpose
of this article is to tell you about one of the simplest and most powerful
programming languages available. It's called Icon, and it is a language for
people who love programming. This tutorial is a “teaser” meant to pique your
curiosity; the April 1998 issue of Linux Gazette has a longer tutorial which goes
into more detail about the features described here.

My Programming Language Can Beat Up Your Programming Language

Languages are the subject of religious wars; very little is gained by arguments
“proving” one language is better than another. Icon is not perfect, nor is it the
“best” language—but it is a very nice language to use. Icon is for people who
don't want to deal with memory management in C or C++; for people who want
the power of Perl and beyond, but prefer a cleaner expression syntax and
fewer special cases; and for people who have a use for rich data structures and
algorithms, but take for granted all the programming building blocks they
learned in school. Icon is used for children's games, scripture analysis, CGI
scripts, compiler research, literate programming, system administration and
visualization. It is in many ways what BASIC should be and what Perl and Java
could have been. (If you know a language that allows simpler and more direct
solutions to the three short, complete program examples given in this article,
please tell us about it.)

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Icon: Listing the Basics

Icon's basic philosophy is to make programming easy. Its syntax is similar to C
or Pascal; programs are composed of procedures, starting from main. Icon's
built-in list and table data types beat out most languages: other languages have
similar types but just don't seem to do the operators and semantics as nicely.
Both types use familiar subscript notation, hold values of any type and grow or
shrink as needed. Lists take the place of arrays, stacks and queues. Tables
associate keys of any type with corresponding values. These types are
ingeniously implemented; for example, lists are like arrays when you use them
like arrays, and like linked lists when you use them like linked lists.

Although Icon has some exotic concepts compared with C or FORTRAN, in
several ways Icon programs are more readable, not just shorter. For example,
when they are “true”, the relational operators return the value of the right
operand, and associate left to right, so (12 < x < 20) tests whether x is between
12 and 20.

Here is a silly sample program that counts the number of occurrences of each
word given on its command line and writes the words out in alphabetical order,
along with their corresponding counts. A table is created with all keys mapping
to a default value of 0. Then, each argument on the command line is used as a
key in the table to increment a counter. The table is sorted, producing a list of
two-element lists containing the keys and their values. These pairs are removed
from the list one at a time, and the keys and values are written out.

procedure main(argv)
 T := table(0)
 every T[!argv] +:= 1
 L := sort(T)
 while pair := pop(L) do
 write(pair[1], ": ", pair[2])
end

The Joy of Generators

Generators are Icon's unique feature; they are its computer science research
contribution. They give the language simpler, more intuitive notation, so they
are worth making a mental leap. Generators can produce more than one value,
and expression evaluation tries each value from a generator until it finds one
that makes the enclosing expression succeed and produce a value. For
example, (2|3|5|7) is a simple expression that produces the values 2, 3, 5 and
7; so the expression (x = (2|3|5|7)) tests if the value of x is one of those four
values.

In the previous program example, the expression !argv generated the elements
from the list argv. Expression evaluation tries to obtain a value; the every

control structure causes all the values to be produced. This code

every i := (1 to 10) | (20 to 30) do
 write(L[i])

prints the first ten values from the list, followed by elements 20 through 30.

Generators are a very natural way to write procedures that compute a
sequence of values. In a language like C, the procedure has to maintain its state
between calls using static data; in Icon, this is done automatically. Here's one
way you might write a web-link checker:

every url := get_url(document) do
 test_url(url)

The procedure get_url scans the document for hyperlinks:

procedure get_url(filename)
 f := open(filename) |
 stop("Couldn't open ", filename)
 while line := read(f) do {
 ...
 url := ...
 suspend url
 }
end

In the above example, get_url is called only once. Each time a suspend occurs, a
result is produced for the surrounding expression, and if the surrounding
expression fails, the call is resumed where it left off, at the suspend. Generators
are the basis for additional powerful language features (see Linux Gazette
article for details).

Graphics and User Interfaces

Icon's built-in graphics have about 40 functions and introduce only one new
type, the window, which is a special extension of the file type. This contrasts
with graphics APIs in other languages where learning graphics means learning
400 or more functions that manipulate several dozen new types of values.
Passing strings and integers into a few functions is all you need to write
amazing graphics without excessive code.

One demonstration of Icon graphics is Brad Myers' “rectangle-follows-mouse”
test, a program that opens up a window in which a rectangle follows a mouse
around on the screen. A window is opened (file mode “g”) with an XOR raster
drawing operation that causes graphics to erase themselves when redrawn. In
the loop, for each user event, the ten-pixel square is erased and redrawn at the
new mouse location. &x and &y are Icon keywords which hold the current
mouse location and are saved in variables x and y. The variables x and y start
out as null. The expression \x fails if x is null, causing the first call to
DrawRectangle to be skipped the first time through the loop, since at this point,
there is no rectangle to draw.

procedure main()
 w := open("win","g", "drawop=reverse")
 repeat {
 # get mouse/keyboard event
 Event(w)
 # erase old rectangle
 DrawRectangle(w, \x, y, 10, 10)
 # draw new rectangle
 DrawRectangle(w, x := &x, y := &y, 10, 10)
 }
end

Simple graphics programming is easy, but complex graphics are also possible.
The Icon Program Library (IPL), a collection of Icon utilities and libraries, offers a
more extensive Motif-style user interface toolkit as well as a WYSIWYG (what
you see is what you get) interface builder that lets you build interfaces by
drawing them. The IPL contains several other examples of graphical games and
applications.

POSIX Made Simple

The Unicon flavor of Icon adds an elegant set of UNIX system-level facilities. An
ultra-simple version of the ls utility illustrates some of these features. This
version takes a directory name on the command line and produces a listing of
file information including file size and modified time, sorted by name. (A more
interesting version is included in Linux Gazette article.)

ls reads the directory and performs a stat call on each name it finds. In Icon,
opening a directory is exactly the same as opening a file for reading; every read
returns one file name.

$include "posix.icn"
procedure main(argv)
 f := open(argv[1]) |
 stop("ls: ", sys_errstr(&errno))
 names := list()
 while name := read(f) do
 push(names, name)
 every name := !sort(names) do {
 p := lstat(name)
 write(p.size, " ", ctime(p.mtime)[5:17],
 " ", name)
 }
end

The lstat function returns a record with all the information that lstat(2) returns.
In the Icon version, the mode field is given as a human readable string—not an
integer to which you must apply bitwise magic. Also, in Icon, string
manipulation is very natural.

Give Icon a try; whether you're a programmer or not, you'll love it.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/051/2354s1.html

Clint Jeffery is an assistant professor in the Division of Computer Science at the
University of Texas at San Antonio. He writes and teaches about program
monitoring and visualization, programming languages and software
engineering. Contact him at jeffery@cs.utsa.edu or read about his research at
www.cs.utsa.edu/faculty/jeffery.html. He received his Ph.D. from the University
of Arizona.

Shamim Mohamed met UNIX in 1983 and was introduced to Linux at version
0.99 pl12. These days he is a Silicon Valley polymath and factotum, and an
instrument-rated pilot flying taildraggers. He can be reached at
spm@drones.com or www.drones.com/. He received his Ph.D. from the
University of Arizona.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jeffery@cs.utsa.edu
http://www.cs.utsa.edu/faculty/jeffery.html
mailto:spm@drones.com
http://www.drones.com/
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Having Fun on ViewSurf

Pierre Ficheux

Issue #51, July 1998

This article explains how Linux is used in the ViewSurf “Beach Report”, a fun
WebCAM-based service.

The raison d'être of ViewSurf is to give surfers access to up-to-date on-line
weather reports. Classic weather report information is provided, such as
temperature and wave status, but the bonus is an up-to-date video that gives
the surfer a current picture of what is happening at his favourite beach.

I met the creator of ViewSurf (Nicolas Saubade) during the summer of 1996.
Nicolas works for COM1 in Cestas near Bordeaux, France. COM1 is a very
famous company in France because it's the foremost modem manufacturer in
Europe even though most COM1 modems are not distributed under its own
label. Additionally, COM1 develops and distributes the ViewCOM, a high
performance video compressing system used in many security applications (see
Figure 1).

Figure 1. ViewCOM VM3

The ViewCOM uses a standard video input, such as a video camera or any PAL/
SECAM/NTSC source, and converts this source to a proprietary format based on
the JPEG compression algorithm. This format is called VCR, and the conversion
can be achieved in real-time. The ViewCOM includes a V34 PC-Card modem, so
it is typically installed on a foreign site and called by specialized software
running under Microsoft Windows (ViewCOM Manager) via a simple phone line.

ViewCOM firmware includes a recording function to create a compressed video
sequence and send it to the caller via modem. The size of each sequence is
100KB to 400KB and running time is 1 or 2 minutes of video.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f1.jpg

Using Linux

Figure 2. ViewSurf basic configuration

The basic configuration of the ViewSurf service is quite simple (see Figure 2).
Each site has a video camera connected to a ViewCOM. The ViewCOM is directly
accessible via modem. The caller records a short film segment and uploads it to
a web server. For the Beach Report, this operation occurs about three times a
day. The browser on the client side must download a plug-in from the COM1
web site in order to display VCR sequences. This plug-in originally existed only
for Microsoft Windows and Macintosh, so I wrote a UNIX/Linux version which is
now on the COM1 site (available for Linux ELF, Solaris and SunOS).

Nicolas wanted to install several sites, but it was quite difficult to manage
because the ViewCOM Manager, a nice graphical program, is not really
programmable—the problem with most Windows applications. He had to
manually call four sites, three times a day, seven days a week—not an
acceptable situation.

I proposed to him that Linux be used to automate the process. I wrote some
simple shell scripts to call each site, create and download the film and copy it to
the main web server (an SGI Indy) using the rcp command. Most of these
scripts are based on the chat program. The download portion was written in C
to keep up with the high speed on the serial line (57,600 or 115,200Kbps).

I know rcp is not the best solution; Linux is a very good web server system in its
own right, but the SGI was already in place. Film is integrated in ViewSurf pages
with HTML code such as:

<EMBED SRC="http://your_linux_server/films/film.vcr"
WIDTH=320 HEIGHT=40>

Actually, using rcp requires no HTML modification in the existing pages, which
is an advantage, so we opted to stay with it.

The main shell scripts, including dial up to a group of sites, are simply activated
by a crontab entry. Additionally, these scripts give some statistics about
ViewCOM access in order to detect any problems.

This project was not an official COM1 project, so the software was installed on a
very old DX2/66 running Slackware 3.0. We had to buy a new 16550A-based ISA
card for the serial line.

The ViewCOM Manager was no longer needed for ViewSurf. Nicolas was
surprised by the power of Linux—all I had to do to solve a problem was write
some shell scripts using standard Linux commands, which would have been

https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f2.jpg

very difficult and costly to implement in Windows. Some months later, Nicolas
created a Snow Report, which is a service for skiing information comparable to
the Beach Report. Last winter, 3 ViewCOMs were installed in the French
Pyrénées mountains.

Nicolas has written some additional HTML pages in order to make the service
more attractive, and ViewSurf now includes interesting links to fun sites and
tourist WebCAMs all around the world. A specific domain now exists for
ViewSurf (viewsurf.com), and the service is available (in French) at http://
www.viewsurf.com/. Figure 3 is an example of a ViewSurf page. Don't forget to
download the VCR plug-in.

Figure 3. Hossegor Beach (France)

Actually, the Linux PC is very efficient and robust. The last time I had to reboot
it was to install a new kernel version.

The Future of ViewSurf

Beach Report and Snow Report are free services for the end user, but Nicolas
created ViewSurf in the hope of making some money with it. He's currently
trying to sell the service to French Tourism Offices, but it's quite hard; basically,
France is lagging in communications and Internet services. Additionally, many
French people consider computers and the Internet as American Trojan horses
such as McDonald's or Disneyland Paris.

Most French on-line services are available for a low performance Videotex-
compatible terminal called Minitel, which was distributed free of charge by
France Telecom at the beginning of the 1980s. This technology is obsolete, but
France Telecom is currently the only French operator for communications. The
Minitel allows them to charge up to several dollars per minute for some on-line
services. This could be the reason why most French people don't have a PC at
home, and as a result, Internet-based services are not seriously considered.

Nicolas has gotten a contract with the government organization which deals
with traffic regulation in Paris. Some French highways have been on the Net
since September 1997. If you compare it with other WebCAM systems, ViewSurf
gives very good quality for a small data size.

This software would be more easily configurable without editing crontab or
shell scripts each time you wished to change the call time or add a new site. To
that end, I wrote a set of CGI (Common Gateway Interface) scripts which
present a simple and portable interface for the Linux server configuration. The
advantage of using CGI instead of standard Linux programs is the capability to

https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f3.jpg

configure the server from any forms-capable browser running on any operating
system.

Another crucial option is to have the ability for several users to look at a “live”
video (not recorded files) at the same time. For this, the Linux PC could be used
as a server to distribute the live image from ViewCOM to several users
connected from the Net. To reach this goal, I wrote a multi-threaded Linux
daemon, based on the POSIX 1003.1c LinuxThreads library by Xavier Leroy
(http://pauillac.inria.fr/~xleroy/linuxthreads). Actually, this daemon handles
only the “video/x-vcr” MIME type and uses two specific TCP ports. The live video
can be inserted in an HTML page with a line such as:

<EMBED SRC="http://your_linux_server:daemon_port"
WIDTH=320 HEIGHT=240>

The second port is reserved for ViewCOM administration, such as setting
brightness or contrast. Additionally, the daemon can control a weather station
in order to get real-time information about external temperature, wind speed
and other weather information. A VISCA (a standard for video camera remote
control) functionality is about to be added to control zoom, pan-and-tilt and
other camera parameters directly from the Internet browser. Figure 4 is a
snapshot of the Bordeaux/Bayonne motorway on the private COM1 web
server.

Figure 4. Snapshot of Bordeaux/Bayonne Motorway

The ViewCOM is often connected to the PC via a serial line, but one of the most
important advantages of the system could be the ability to control a remote
ViewCOM. So, it's not necessary to install a PC on the site you want to look at,
you just have to set up a ViewCOM connected to a simple phone line or a
leased line. In the phone line case, it's possible for the daemon to call the
ViewCOM at starting time or only when an HTTP request occurs. In this last
case, the daemon hangs up the line when the last client is disconnected.

References and Contact

Pierre Ficheux is in charge of system development at Lectra-Systèmes, Cestas,
France. When not doing something with Linux, he loves picking tunes on his

https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2569s1.html

guitar on the nice beach at Arcachon. He can be reached by e-mail at
pierre@rd.lectra.fr.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Encrypted File Systems

Bear Giles

Issue #51, July 1998

Here's a good way to protect your files. Mr. Giles explains how to encrypt your
entire file system rather than individual files.

In one episode of “Miami Vice” Crockett and Tubbs have managed to gain
access to a drug runner's computer, only to be stymied by its insistence on a
password before presenting incriminating evidence. Not to worry—after only
three unsuccessful guesses, the helpful computer offered to reveal the secret
password to our heroes. It's easy to laugh at this plot development, but many
otherwise intelligent people continue to do equally dumb things.

Consider the law office where legal papers are always kept in locked cabinets
behind locked doors. Every computer on the LAN also has access to the
“password-protected” word processing documents, but the encryption can be
broken in seconds with readily available software. The name of this program,
and the files it can crack, are in the sci.crypt FAQ. These files could be retrieved
by a hostile agent “working” for a cleaning contractor.

Or consider the company with sales offices spread nationwide. Highly sensitive
pricing and contact information is distributed on CD-ROM discs, which are
discarded as soon as each new disc arrives. Alternately, a salesman may have
his laptop stolen while on the road. (See Practical UNIX and Internet Security,
Garfinkel and Spafford, O'Reilly and Associates, 1996.)

Or consider the individual computer owner who leaves his system in a shop for
free installation of an upgrade. One of the employees quietly copies a few files,
and by the time the victim learns of the extent of the identity theft it's too late—
he's already recommended the same shop to several of his friends for the
unusually good service.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Solution: File Encryption

For every complex problem there is an answer that is
clear, simple and wrong. --H. L. Mencken

The simple solution to these problems is file encryption. But this solution is
flawed for several reasons:

• Encryption within programs is generally weak to the point of uselessness
due to U.S. export regulations.

• Encryption outside programs requires explicit actions to decrypt and to
re-encrypt. This problem may be manageable if a file needs to be
accessed only by a single user, but it's a much more difficult problem if
several people need to share access.

• Explicit encryption requires sharing the password, and the more people
who have the password, the more likely it becomes that someone will jot
it down in an obvious location.

• Explicit encryption may enable a disgruntled employee to encrypt the files
with a different password.

• Decrypting a file increases the risk that unencrypted versions will remain
on the disk or on backup media.

Even with its flaws, file encryption may still be better than the alternatives.
Fortunately there is a better solution.

Solution: File System Encryption

Our solution is to encrypt the entire file system. User programs see a regular
file system—perhaps even a file system that natively supports encryption. An
attacker who can only see the physical disk sees garble.

This approach is not perfect. Most notably, some implementations could leave
decrypted data visible in the disk cache. That is a minor problem with the cache
in core (if an attacker has compromised root, you have more serious problems),
but a major problem if these pages get written to swap.

On the other hand, the kernel ensures that disk sectors are decrypted during
reads and re-encrypted during writes. The impact on users is minimal. In one
practical scenario, a “responsible individual” will mount the encrypted file
system in the morning. (This requires the encryption key.) In the evening, the
last person to leave could unmount the file system, or it could be automatically
unmounted by a cron job.

Encryption Algorithms

Better the devil we know... --Anonymous

We've agreed on the desirability of encrypting file system. But which encryption
algorithm should we use? The wrong choice will leave us with a false sense of
security.

Writing our own encryption routines is one possibility. The downside is
encryption algorithms are notoriously difficult to properly design and
implement. The problem is that the designer does not know what others will
find difficult. He only knows what he finds difficult. Mathematics is littered with
the bodies of “difficult” problems which became trivial after one person had a
flash of insight.

As a practical matter, we should limit our search to well-known encryption
algorithms. This has the additional benefit of allowing us to share encrypted file
systems with others with a minimum amount of hassle.

XOR

The first encryption algorithm learned by most programmers is the lowly xor

algorithm. To encrypt the data, we XOR it with the key (modulo the length of
the key, if we use multi-byte encryption). To decrypt the data, we XOR it with
the key again.

• Benefits: fast and exportable
• Drawback: trivial to break
• Synopsis: stops casual snooper

DES

DES has a controversial past. It was a government-endorsed algorithm for non-
classified use, but some people believe that the government deliberately
introduced weaknesses. On the other hand, decades of research have revealed
only relatively modest weaknesses. It is economically feasible for a large
company to build a DES-cracking machine.

• Benefits: strong, well-tested, 56-bit keys (The variant known as TRIPLE-DES
uses 112-bit keys.)

• Drawback: not exportable
• Synopsis: a reasonable choice

IDEA

DES was designed for hardware implementations—and is difficult to implement
efficiently in software. IDEA was designed around the low-level operations
common on small processors. It is not a U.S. federal standard and wasn't
weakened by the dreaded TLAs (three letter acronyms, such as DEC and FBI).
On the other hand, while the TLAs have undoubtedly analyzed it, they aren't
talking.

• Benefits: strong, tested, 64-bit keys (used internally by PGP)
• Drawback: not exportable
• Synopsis: a reasonable choice

RSA

RSA encryption is a relatively ineffective algorithm. Many people feel that the
primary weakness with PGP lies in the 1024-bit RSA encryption of the IDEA key,
not the IDEA encryption of the actual data.

• Benefits: solution to public key encryption problem, 128-bit keys
• Drawbacks: requires at least 1024 bits for security comparable to IDEA,

very slow
• Synopsis: not appropriate

Obtaining the Source: Cypherpunks

Fools rush in where angels fear to tread. --Alexander
Pope

Undoubtedly, some people now feel the urge to run out and write an
encrypting file system. The rest of us turn to the Cypherpunks. They have
published a set of patches to the 2.0.11 kernel which implement DES and IDEA
encryption in “loopback” devices. The primary source for these patches is at:
ftp://ftp.csua.berkeley.edu/pub/cypherpunks/filesystems/linux.

There are four patches:

1. loopfix-2.0.11.patch: modifications to loopback device
2. export-2.0.11.patch: more patches, mostly to documentation and the

makefile
3. crypto-2.0.11.patch: export-restricted patches: DES and IDEA
4. mount-2.5k.patch: modification to mount to pass encryption keys.

The U.S. government continues to interpret the International Traffic in Arms
Regulation (ITAR) in a manner that prohibits the export of meaningful
cryptographic software via electronic means. There are no restrictions on the
export of the same material in printed form or its subsequent distribution from
sites outside North America.

The source code in crypto-2.0.11.patch implements DES and IDEA encryption
and cannot be legally exported, even though this source is readily available
worldwide. Violating export restrictions will not aid the effort to promote the
free use of strong encryption, since the government could use this as proof of
the need for stronger restrictions on domestic distribution.

Building the Kernel

Building the new kernel is no different than applying any other set of patches.
The latest stable kernel release for which this works is 2.0.30. For convenience, I
will assume it is stored in /usr/src/linux-2.0.30.tar.gz. Next, build a reference
version of the kernel. Then, follow these steps:

1. Get the latest encrypted file system patches. For convenience, I will
assume that they are the 2.0.11 patches and stored in /usr/src/cryptfs.

2. Apply the patches to the kernel, retaining the reference copy. On my
system, this involved making a working directory, and applying the
patches and fixing problems. I made the working directory by issuing the
following commands:

cd /usr/src
rm linux
tar xzpf linux-2.0.30.tar.gz
mv linux linux-2.0.30.efs
ln -s linux-2.0.30.efs linux

I applied the patches using these commands:
cd linux
patch < ./cryptfs/export-2.0.11.patch
patch < ./cryptfs/loopfix-2.0.11.patch
patch < ./cryptfs/crypto-2.0.11.patch

I fixed problems using these commands:
mv *.h linux/include/linux
mv des.c linux/kernel
mv idea.c linux/drivers/block
mv loopfix.txt linux/Documentation

3. Configure and build the new kernel. Remember to enable the loopback
device and file system encryption.

4. Get the source for mount and apply the required patch. Build it.
5. Reboot the system with your new kernel.

At this point everything should be ready to go, but I've encountered problems
after builds. I believe my problem was caused by improper application of the

patches, perhaps due to order-based instabilities caused by changes between
the 2.0.11 and 2.0.30 and above kernels. One recurrent problem occurred with
the urandom command:

od -x /dev/urandom | more

Giving this command produced kernel warning messages. If this happens to
you, reinstall the kernel source and patches and check your warnings carefully.

Encrypted File Systems: Ready, Set, Go!

Find a couple of blank floppies on which to test an encrypted file system. Then,
create an encrypted file system using DES encryption:

dd if=/dev/urandom of=/dev/fd0 bs=1k count=1440
losetup -e des /dev/loop0 /dev/fd0
Pass phrase: des test
mke2fs /dev/loop0
losetup -d /dev/loop0

A couple of notes about this example:

• The first command initializes the floppy disk with random data. Initializing
the disk to zeroed data reduces a blank disk to a “known plaintext”
cryptology problem—not a good idea.

• The second command specifies that we want a loopback device to cover
the floppy device driver with a DES encryption layer. We could replace /
dev/fd0 with the name of a file. The pass phrase is not echoed. Also, the
pass phrase can be 120 characters long—and should definitely be more
than 8 characters!

• The third command is the normal mkfs(1) utility.
• The fourth command releases the loopback device.

We also want to create an encrypted file system using IDEA; the same idea, only
replace des with idea.

Finally, create one more pair of disks which use different passwords. (If you
want to be unusually perverse, use your previous IDEA test pass phrase on your
second DES test disk and vice versa.)

Now we're ready to mount these disks. First, try to mount the floppies using a
standard mount command:

mount /dev/fd0 /mnt -text2

These commands should fail with “can't find an EXT2 file system.” Now try
mounting each floppy again:

mount /dev/fd0 /mnt -text2,loop,encryption=idea
mount /dev/fd0 /mnt -text2,loop,encryption=des

In each case you should be prompted for a pass phrase. Needless to say, you
should not be able to mount the DES encrypted disk when specifying IDEA
encryption, and vice versa. Likewise, you should not be able to mount the DES
encrypted disk 1 with the second password or vice versa, and you should be
able to mount the file system when you specify the correct encryption format
and password.

This is another area where gremlins have appeared on my system. Once IDEA
encryption worked fine but /dev/urandom failed; in another case, /dev/
urandom worked but IDEA encryption produced kernel warnings on every even
sector.

Now a few more tests. Edit the /etc/fstab file to add these entries:

/dev/fd0 /mnt/des ext2
 defaults,noauto,loop,encryption=des 0 0
/dev/fd0 /mnt/idea ext2
 defaults,noauto,loop,encryption=idea 0 0

Try to mount your test disks on /mnt/des and /mnt/idea. Once again you
should be prompted for a pass phrase and will be successful only when
encryption algorithm and pass phrases match.

Finally, reboot your system and repeat these tests. If possible, install the
modified kernel on a second system and verify that you can exchange media
between the systems. Such is life on the bleeding edge of technology.

Applications

Now that we have encrypted file systems, what can we do?

• We can add strong encryption to programs which don't support them
natively, and we keep their files on an encrypted file system.

• We can add strong encryption to distributed media. Some people already
build ISO-9660 images in a file via a loopback device; producing an
encrypted image would be trivial.

• CD-ROM-based back-up protocols become more attractive. Outdated
back-up discs can be discarded without fear of a dumpster diver gaining
access to crucial information.

• We can improve system security. Programs such as Tripwire, which record
cryptographic signatures of key files, traditionally require read-only media
to prevent attackers from modifying the reference information. It is still
conceivable that an inside attacker could replace this critical disk. Now, we

can easily keep this crucial information in an encrypted form, making a
spoofed disk much harder to produce.

• We can add a measure of strong encryption to entire systems which don't
support them natively. Encrypted file systems should be exportable via
NFS or SMB—packet sniffers remain a problem but the disk would be
protected.

Long-Term Applications

Even taking a cursory glance at the trends of security software, one notices
recurring themes. Encrypted file systems protect the data on disks. SSH (Secure
Shell) encrypts and authenticates communications. Secure-RPC (remote
procedure call) encrypts interprocess communications. RPM authenticates
software upgrades.

Is there any question that encryption and authentication routines belong in the
kernel? Encryption keys could be stored with each device and process, and with
negotiations for unique session keys automatically mediated between any
process within and without the system that desired it. There would not be
needless duplication of identical routines, or worries about export restrictions
since these issues would have already been addressed. If necessary the
encryption routines could be localized to a loadable module, although that
raises certain security issues.

The downside is anyone with root access can grab the encryption keys from the
system tables; however, once root is compromised all bets are off anyway. On
the other hand, supplying strong encryption and authentication services in the
kernel should reduce the risk of root becoming compromised. Also, DH key
negotiation means that my keys aren't compromised even if I'm talking to
someone who is compromised.

Bear Giles bear@coyotesong.com, of Coyote Song LLC, is a UNIX Consultant
with almost 15 years of experience. He has used Linux at home since pre-0.99
days.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Graphical Desktop Korn Shell

George Kraft IV

Issue #51, July 1998

The Graphical Desktop Korn Shell (DtKsh) is a featured part of the Common
Desktop Environment (CDE). DtKsh provides a consistent and reliable graphical
Motif shell language that is supported on all CDE-compliant systems.

Portability and pervasiveness are two important characteristics to consider
when you are developing code. Using a programming language with a well-
defined and stable application programming interface (API) answers the need
for portability. A programming language with a large, established installed base
provides pervasiveness. Although Perl, Tcl/Tk, Common Gateway Interface (CGI)
and Java have large installed bases, they are not suited for some projects. The
reason for this is their inconsistent installation base due to the lack of a well-
defined or rapidly changing API.

The Desktop Korn Shell (DtKsh) that comes with the Common Desktop
Environment (CDE) is built on the ksh93 standard with X, Xt, Motif, ToolTalk and
CDE built-in APIs. Unlike Perl and Tcl/Tk, major vendors have built and
supported DtKsh through the CDE initiative. Using DtKsh, desktop
programmers can develop and/or prototype plug-and-play Graphical User
Interface (GUI) applications that are compatible on all CDE-compliant systems
without compilation. Although DtKsh applications are interpreted for
portability, they can easily be migrated to Motif in C for performance.

Tcl/Tk can be ported to C with the aid of special Tcl/Tk libraries; however,
programmers are as disadvantaged with the C Tcl/Tk libraries as they are with
the Tcl/Tk shell, because of a not-so-standard application programming
interface. DtKsh, unlike Tcl/Tk, provides a well-established API set where the
programmer's knowledge transcends from C to shell programming.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

DtKsh Benefits

In AIX, /bin/ksh is an XPG4-compliant version of ksh88. CDE's /usr/dt/bin/dtksh
on AIX is based on the newer ksh93 standard. ksh93 now includes floating-
point mathematics, associative arrays, new string operations, hierarchical
variables, reference variables, developer-extendable APIs using attached
shared libraries and character class patterns.

Floating-point mathematics: Korn Shell variables can be cast, or defined, to
various aggregate data types. Floating-point mathematics is a new feature in
the Korn Shell that enables the assignment and operation of decimal values.
The following example defines the floating-point variable PI, then assigns to it
the decimal value of 3.14159.

typeset -F PI # define "PI" as a float
PI = 3.14159

Associative arrays: Instead of using positive integer indices, associative arrays
allow elements of an array to be addressed using alphanumeric strings. The
following example shows SYSINFO as an array containing information about an
operating system. The associative SYSINFO array can be indexed with the
alphanumeric string of "os" to find the string value of AIX.

typeset -A SYSINFO # define "SYSINFO" as an
associative array
SYSINFO["os"]=AIX

New string operations: Six new string operations were introduced in ksh93.
These new operations provide substringing and substitution of a string pattern
with an alternate. Substringing permits extraction of a smaller string, given an
offset indicating where to begin and possibly its length.

• A substring of a larger string can be extracted by length at a given starting
point, or a substring can be taken by starting at the offset within the larger
string and stopping at the end of the string. The following shows a
substring of a given length:

${variable:offset:length}

• A substring of no particular length can be taken by just providing the
offset.

${variable:offset}

String substitution of a character pattern can be performed for the first
occurrence, a repeated occurrence, at the beginning of the string (prefix)
or at the end of the string (suffix).

• Substitute the first occurrence of a pattern with an alternate string:
${variable/pattern/string}

• Substitute all occurrences of a pattern with an alternate string:
${variable//pattern/string}

• Substitute the pattern prefix with the alternate string:
${variable/#pattern/string}

• Substitute the pattern suffix with the alternate string:
${variable/%pattern/string}

Hierarchical variables: Hierarchical variables, or compound names, enable C
structure-like aggregate data types. This allows Korn Shell to store information
in variables in an associative fashion. For example, if we had a box with a width
of 80 and a height of 24, then we could store all that information in one
hierarchical variable instead of separate and disjointed variables of storage.
Each element of the compound name must be used before setting sub-
members.

BOX= # declare before assigning sub-members
BOX.WIDTH = 80
BOX.HEIGHT = 24

Reference variables: Referencing allows a variable to point to the same value as
another variable; both variables reference the same value as shown below:

name reference
typeset -n FOO=BAR
FOO="Hello World"
print "Hello World"
print ${BAR}

Desktop built-in commands: Korn Shell provides some standard X, Xt, Motif,
POSIX internationalization and CDE C language APIs directly built into the shell.
Direct access to these APIs from the shell provides a significant runtime
performance improvement for DtKsh shell applications. Using the standard X
and Motif APIs, with some semantic changes to the source, makes it possible
for DtKsh shell scripts to be migrated to C and compiled.

POSIX internationalization: Korn Shell provides the shell equivalent of the C
language POSIX internationalization APIs catopen and catgets. The
internationalization APIs allow the shell program to change its message catalog
depending on its language. Internationalized shell scripts enable multilingual
support.

Character class patterns: Regular expressions in the shell are enhanced by
predefining a set of character class patterns. Now we can easily match certain
classes of characters by using the [[:class:]] notation where class can be
specified as alnu, alpha, cntrl, digit, graph, lower, upper, print, punct, space and
xdigit.

only print files that
begin in upper case
print [[:upper:]]*

old way
print [A-Z]*

DtKsh “Hello World” Source

The familiar “Hello World” Motif application, shown in Listing 1, is actually
written in DtKsh instead of C. Similar to C, we initialize the top-level shell
widget, then start building the GUI application. Listing 1 shows a standard Motif
message dialog using the familiar XmCreateMessageDialog API. In DtKsh,
handles to widgets can be retrieved, widgets can be managed and unmanaged,
and callbacks can be created. Afterwards, the program enters into the Xt
Intrinsic's main loop via XtMainLoop where it processes X protocol events. In
this case, clicking on the OK button would be an event processed by the event
loop.

Figure 1. DtKsh and Motif “Hello World”

The Motif “Hello World” DtKsh application in Listing 1 can be easily ported to C
with a few minor changes, shown in Listing 2. By adding some include files,
defining some variables, adding some commas and semi-colons, and sprucing
up some arguments, we have a C program. The result is that DtKsh shell scripts
make the same API calls as the C Motif application.

AIX provides some extra DtKsh help through a GUI builder. Developers can drag
and drop widgets onto a canvas, then add logic code to enable the application
to do some work. Like any GUI builder, the code is somewhat verbose;
however, it is consistent and portable. AIX is the only version of UNIX that offers
this feature.

https://secure2.linuxjournal.com/ljarchive/LJ/051/2643l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2643l2.html

Figure 2. AIX QtScript GUI Builder

User Extendable

Developers can create their own new APIs for DtKsh by creating glue-layer
libraries. Glue-layer libraries enable DtKsh to be extended with built-ins for
functions such as system management and networking. The performance
advantage of using built-in functions rather than calling to an external
command is that built-ins execute within the process of the shell script.
Commands that are called externally must create new resources in the
operating system and run as separate processes. DtKsh glue layer libraries pass
arguments between a normal UNIX C library and the DtKsh shell, and they
return a success or failure status. The following list provides a few rules for
creating a glue layer:

• Name the function with a b_ prefix.
• Function returns a 0 integer for success, between 1 and 255 for failure.

• Function should take argc and argv as input.

• Link your glue-layer libraries shared.

Listing 3 shows a DtKsh shell script that dynamically loads the “example” shared
glue-layer library. Once the glue layer library is loaded and the new built-in APIs

https://secure2.linuxjournal.com/ljarchive/LJ/051/2643l3.html

are defined, the script can make direct calls with arguments to the new built-in
functions. In Listing 3, the example built-in is called with the “Hello World”
arguments.

By providing in-line built-in functions, we can run scripts much faster because
we are not relying on outside programs running as separate system erocesses.
Listing 4 shows the C glue-layer for the example built-in shared library.
Following the rules outlined above, we prefix the example function with a b_,
and we pass in an argument vector and its size. After the function has done its
work, we return 0 for success and a positive integer for failure. DtKsh built-in
functions can also act as procedures that pass environment variables in and
out through its argument list. See Desktop KornShell Graphical Programming
by J. Stephen Pendergrast, Jr. [Addison-Wesley, 1995] for more details on how
to pass and retrieve environment variables from built-in procedures.

Conclusion

The Desktop Graphical Korn Shell provides programmers with the standard
ksh93 baseline APIs with the addition of the X Window System, Motif and the
Common Desktop Environment. Shell programmers can write portable shell
scripts, prototype GUI shell scripts and migrate GUI shell scripts to faster
running C programs. DtKsh also provides programmers with the ability to
extend the shell language with built-in shared libraries so that scripts can
benefit from feature-rich libraries, such as those for configuration
management.

The Advantages of DtKsh

Acknowledgements

George Kraft is an Advisory Software Engineer for IBM's Network Computer
Division. He has previously worked on CDE V2.1 and V1.0 for IBM's RS/6000
Division and on X and Motif for Texas Instruments' Computer Systems Division.
He has a BS in Computer Science and Mathematics from Purdue University. He
can be reached via e-mail at gk4@austin.ibm.com.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/051/2643l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2643s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2643s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A SCSI Test Tool for Linux

Pete Popov

Issue #51, July 1998

Mr. Popov shows us how easy it is to test SCSI devices when our operating
system is Linux.

A few months ago my ex-boss and I were discussing the latest product of his
company and the systems they were using for testing purposes, both in the
office and in the factory. “It's all DOS—what you want is cheap,” he told me. I
believe that statement summarizes the reason DOS became the operating
system of choice for factories and many laboratories. A fully equipped SCSI
DOS system needs little memory, a cheap video card and monitor and a
relatively cheap SCSI controller. Of course, these days there are many other
reasons for using DOS for testing SCSI peripheral devices. There is a vast
knowledge base, availability of ASPI-based tools and, most likely, the company
already has a hefty investment in test software or in developing its own tests.
(ASPI stands for Advanced SCSI Protocol Interface and was developed by
Adaptec. It is the de facto SCSI programming interface on DOS and Windows.)
Nevertheless, Linux is also a viable SCSI test system, and there are some very
good reasons why you should consider Linux for testing your SCSI devices.

Testing a SCSI sequential access device is not a simple matter. These devices
(DDS and AIT tape drives, to be specific) are usually used in a server
environment where system downtime is not acceptable, especially when the
down-time is due to the data backup device hanging the SCSI bus. (DDS, digital
data storage, is Sony's 4mm tape drive technology. AIT, advanced intelligent
tape, is Sony's new 8mm tape drive technology.) To put such a product on the
market, extensive testing needs to be done in quite a few areas. Currently, the
testing is performed on PCs running Sony internal tests or Independent
Software Vendor (ISV) backup software or OEM proprietary systems running a
flavor of UNIX, NT or some other proprietary OS. The qualification cycle of
these devices is much longer than that of hard disks, but so is the life cycle of
the product. The more systems you can test on and the more types of tests you
can run, the more solid your product will be.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Some portions of the SCSI protocol cannot be tested without using a specialized
tool, such as an Itech SCSI emulator. This type of tool allows the engineer to
develop powerful low-level SCSI tests to test the SCSI protocol handling. For
example, with such a tool you might issue a write command, send one or more
bytes to the drive, raise ATN (attention control signal) and then, when the drive
goes to output data, send an abort or reset message. These tools, however, are
quite expensive (in excess of $5000 US) and certainly not all engineers need
them, since not all firmware engineers work on the SCSI protocol. By the time
the product makes its way to the test lab, most SCSI protocol problems are
solved so the lab needs only one of those specialized testers, mainly for use in
firmware regression testing.

Yet, with all of the specialized tests we have, some of our most important
testing is done on commercial UNIX systems, surprisingly enough with well-
written C shell scripts using standard UNIX utilities such as dd, tar and mt. My
guess would be that at least half of the firmware problems in the past have
been found running these scripts on UNIX systems. Linux has all those utilities,
as well as a selection of shells. The same shell scripts running on commercial
UNIX systems can easily be ported to Linux, maintaining the same functionality.
This means you can supplement the expensive commercial UNIX systems in
your lab with a few low-cost PCs running Linux. This alone makes Linux a
serious contender in the SCSI testing field.

Walk into a lab where SCSI devices are being tested, and attached to the PCs on
a single SCSI bus, you'll usually see a few devices. It's certainly important to test
more than one device at a time; however, it rarely makes sense to have more
than three or four devices running under the same test. Even if you fully
populate the SCSI bus, if one device hangs overnight it sometimes hangs the
SCSI bus, not allowing the rest of the devices to continue. It makes no
difference, in this case, that you have six other devices attached. What would
be better is to attach a second or even third SCSI controller and run different
types of tests on each one. That way you can utilize the system more efficiently
and thereby get more done in the same amount of time. Furthermore, if one
test finds a firmware bug and the bus hangs, the other tests can continue. DOS,
however, is not a multitasking operating system, and if you wish to run
different tests on each SCSI controller, you'll have to add all that complexity to
your test. Well, it's really no wonder I've never seen that done. It's tough
enough debugging complex SCSI tests, not knowing whether the failure was
due to the test or the device. Adding additional complexity to the test will most
certainly take away from the firmware engineer's time who will have to debug
what may turn out to be a test problem, not a drive firmware problem. Linux,
on the other hand, does not suffer from this limitation. You can write basic
tests, add them to your shell script and let the operating system worry about

the multitasking. If one test fails because of a hung device, the other tests can
continue running.

The standard UNIX utilities provide a high level of functionality testing, but, to
complete a test suite, the engineer needs finer control of the SCSI device. The
ability to send any SCSI command, including commands with illegal bits set, as
well as illegal commands, is a must. This is one area where standard UNIX
utilities cannot do the job and an alternative method is needed. Some time ago,
I decided it would be nice to have a library of SCSI commands that made it easy
to write tests, as well as to expand the library itself. So I started playing with the
Linux generic SCSI driver, which seemed the easiest way to go, and I recently
released such a library under the GPL. libdat.a contains just about all the
sequential-access SCSI commands and, if there is something else you need,
adding new commands is quite trivial. The library is packaged with a tape tool
called stt, SCSI Tape Utility, which is based on libdat.a. stt adds a powerful
capability to my Linux workstation at the office. I can now interactively send any
command to the tape drives, as well as reprogram drives and make
reprogramming firmware tapes. (These last two features are removed from the
GPL version.) It is also an example of how easy it is to write SCSI tests using
libdat.a and the generic driver in general. Most importantly, I now find it easier
to write tests for my Linux workstation than for proprietary tools. Here's an
example of a short C program (the #includes are not shown):

_Inquiry(); /* show device information */
_Space(EOD,0); /* space to End Of Data */
_ReadPosition(); /* show current logical
 * position */
_Space(FMK, -2); /* space reverse 2 filemarks */

While the above program doesn't do much, it does show the ease with which
the programmer can write tests. The stt utility provides a longer example of a
fully functional and useful program based on libdat.a.

You may be happy with your current test setup, but consider the following
questions. Could you do more if your OS was more capable? What if you could
write C programs and shell scripts, instead of DOS batch files? What if your test
system was fully networked? Could you run the log files through a Perl filter to
format them and display them on your internal web site? Could you benefit
from the standard UNIX utilities, which you don't have to rewrite? Certainly you
could benefit from attaching more than one controller to your system and
running more than one type of test at the same time while your OS took care of
the multitasking. What if there was a generic, easy-to-use SCSI interface and
library that gave you full control of your SCSI devices as well as access to all
source code? What if you could do your development on a platform with a rich
set of development tools, including compilers, debuggers, version control
systems, etc? Next time you are considering a platform for your SCSI testing,

look at the answers to these questions and do yourself a favor. Consider how
much more you could do, if that platform was running Linux.

Resources

Pete Popov is a firmware engineer at Sony's Advanced Storage Development
Division in San Jose, CA, currently working on Sony's AIT-2 tape drive. The
director of his division is still skeptical of Linux, but he just made the huge leap
from a Macintosh to a PC, so he needs a little more time to come around. Pete
can be contacted at ppopov@redcreek.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/051/2672s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Introducing Samba

John Blair

Issue #51, July 1998

When you need to network your Linux box with Windows, Samba is the way to
do it.

The whole point of networking is to allow computers to easily share
information. Sharing information with other Linux boxes, or any UNIX host, is
easy—tools such as FTP and NFS are readily available and frequently set up
easily “out of the box”. Unfortunately, even the most die-hard Linux fanatic has
to admit the operating system most of the PCs in the world are running is one
of the various types of Windows. Unless you use your Linux box in a particularly
isolated environment, you will almost certainly need to exchange information
with machines running Windows. Assuming you're not planning on moving all
of your files using floppy disks, the tool you need is Samba.

Samba is a suite of programs that gives your Linux box the ability to speak SMB
(Server Message Block). SMB is the protocol used to implement file sharing and
printer services between computers running OS/2, Windows NT, Windows 95
and Windows for Workgroups. The protocol is analogous to a combination of
NFS (Network File System), lpd (the standard UNIX printer server) and a
distributed authentication framework such as NIS or Kerberos. If you are
familiar with Netatalk, Samba does for Windows what Netatalk does for the
Macintosh. While running the Samba server programs, your Linux box appears
in the “Network Neighborhood” as if it were just another Windows machine.
Users of Windows machines can “log into” your Linux server and, depending on
the rights they are granted, copy files to and from parts of the UNIX file system,
submit print jobs and even send you WinPopup messages. If you use your
Linux box in an environment that consists almost completely of Windows NT
and Windows 95 machines, Samba is an invaluable tool.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. The Network Neighborhood, Showing the Samba Server

Samba also has the ability to do things that normally require the Windows NT
Server to act as a WINS server and process “network logons” from Windows 95
machines. A PAM module derived from Samba code allows you to authenticate
UNIX logins using a Windows NT Server. A current Samba project seeks to
reverse engineer the proprietary Windows NT domain-controller protocol and
re-implement it as a component of Samba. This code, while still very
experimental, can already successfully process a logon request from a
Windows NT Workstation computer. It shouldn't be long before it will act as a
full-fledged Primary Domain Controller (PDC), storing user account information
and establishing trust relationships with other NT domains. Best of all, Samba is
freely available under the GNU public license, just as Linux is. In many
environments the Windows NT Server is required only to provide file services,
printer spools and access control to a collection of Windows 95 machines. The
combination of Linux and Samba provides a powerful low-cost alternative to
the typical Microsoft solution.

Windows Networking

Understanding how Samba does its job is easier if you know a little about how
Windows networking works. Windows clients use file and printer resources on a
server by transmitting “Server Message Block” over a NetBIOS session. NetBIOS
was originally developed by IBM to define a networking interface for software
running on MS-DOS or PC-DOS. It defines a set of networking services and the
software interface for accessing those services, but does not specify the actual
protocol used to move bits on the network.

Three major flavors of NetBIOS have emerged since it was first implemented,
each differing in the transport protocol used. The original implementation was
referred to as NetBEUI (NetBIOS Extended User Interface), which is a low-
overhead transport protocol designed for single segment networks. NetBIOS

over IPX, the protocol used by Novell, is also popular. Samba uses NetBIOS over
TCP/IP, which has multiple advantages.

TCP/IP is already implemented on every operating system worth its salt, so it
has been relatively easy to port Samba to virtually every flavor of UNIX, as well
as OS/2, VMS, AmigaOS, Apple's Rhapsody (which is really NextSTEP) and
(amazingly) mainframe operating systems like CMS. Samba is also used in
embedded systems, such as stand-alone printer servers and Whistle's InterJet
Internet appliance. Using TCP/IP also means that Samba fits in nicely on large
TCP/IP networks, such as the Internet. Recognizing these advantages, Microsoft
has renamed the combination of SMB and NetBIOS over TCP/IP the Common
Internet Filesystem (CIFS). Microsoft is currently working to have CIFS accepted
as an Internet standard for file transfer.

Figure 2. SMB's Network View compared to OSI Networking Reference Model

Samba's Components

A Samba server actually consists of two server programs: smbd and nmbd.
smbd is the core of Samba. It establishes sessions, authenticates clients and
provides access to the file system and printers. nmbd implements the “network
browser”. Its role is to advertise the services that the Samba server has to offer.
nmbd causes the Samba server to appear in the “Network Neighborhood” of
Windows NT and Windows 95 machines and allows users to browse the list of
available resources. It would be possible to run a Samba server without nmbd,
but users would need to know ahead of time the NetBIOS name of the server
and the resource on it they wish to access. nmbd implements the Microsoft
network browser protocol, which means it participates in browser elections
(sometimes called “browser wars”), and can act as a master or back-up
browser. nmbd can also function as a WINS (Windows Internet Name Service)
server, which is necessary if your network spans more than one TCP/IP subnet.

Samba also includes a collection of other tools. smbclient is an SMB client with
a shell-based user interface, similar to FTP, that allows you to copy files to and
from other SMB servers, as well as allowing you to access SMB printer
resources and send WinPopup messages. For users of Linux, there is also an
SMB file system that allows you to attach a directory shared from a Windows
machine into your Linux file system. smbtar is a shell script that uses smbclient
to store a remote Windows file share to, or restore a Windows file share from a
standard UNIX tar file.

The testparm command, which parses and describes the contents of your
smb.conf file, is particularly useful since it provides an easy way to detect
configuration mistakes. Other commands are used to administer Samba's
encrypted password file, configure alternate character sets for international
use and diagnose problems.

Configuring Samba

As usual, the best way to explain what a program can do is to show some
examples. For two reasons, these examples assume that you already have
Samba installed. First, explaining how to build and install Samba would be
enough material for an article of its own. Second, since Samba is available as
Red Hat and Debian packages shortly after each new stable release is
announced, installation under Linux is a snap. Further, most “base” installations
of popular distributions already automatically install Samba.

Before Samba version 1.9.18 it was necessary to compile Samba yourself if you
wished to use encrypted password authentication. This was true because
Samba used a DES library to implement encryption, making it technically
classified as a munition by the U.S. government. Binary versions of Samba with
encrypted password support could not be legally exported from the United
States, which led mirror sites to avoid distributing pre-compiled copies of
Samba with encryption enabled. Starting with version 1.9.18, Samba uses a
modified DES algorithm not subject to export restrictions. Now the only reason
to build Samba yourself is if you like to test the latest alpha releases or you
wish to build Samba with non-standard features.

Since SMB is a large and complex protocol, configuring Samba can be daunting.
Over 170 different configuration options can appear in the smb.conf file,
Samba's configuration file. In spite of this, have no fear. Like nearly all aspects
of UNIX, it is pretty easy to get a simple configuration up and running. You can
then refine this configuration over time as you learn the function of each
parameter. Last, the latest version of Samba, when this article was written in
late January, was 1.9.18p1. It is possible that the behavior of some of these
options will have changed by the time this is printed. As usual, the

documentation included with the Samba distribution (especially the README
file) is the definitive source of information.

The smb.conf file is stored by the Red Hat and Debian distributions in the /etc
directory. If you have built Samba yourself and haven't modified any of the
installation paths, it is probably stored in /usr/local/samba/lib/smb.conf. All of
the programs in the Samba suite read this one file, which is structured like a
Windows *.INI file, for configuration information. Each section in the file begins
with a name surrounded by square brackets and either the name of a service
or one of the special sections: [global], [homes] or [printers].

Each configuration parameter is either a global parameter, which means it
controls something that affects the entire server, or a service parameter, which
means it controls something specific to each service. The [global] section is
used to set all the global configuration options, as well as the default service
settings. The [homes] section is a special service section dynamically mapped to
each user's home directory. The [printers] section provides an easy way to
share every printer defined in the system's printcap file.

A Simple Configuration

The following smb.conf file describes a simple and useful Samba configuration
that makes every user's home directory on my Linux box available over the
network.

[global]
 netbios name = FRODO
 workgroup = UAB-TUCC
 server string = John Blair's Linux Box
 security = user
 printing = lprng
[homes]
 comment = Home Directory
 browseable = no
 read only = no

The settings in the [global] section set the name of the host, the workgroup of
the host and the string that appears next to the host in the browse list. The
security parameter tells Samba to use “user level” security. SMB has two modes
of security: share, which associates passwords with specific resources, and
user, which assigns access rights to specific users. There isn't enough space
here to describe the subtleties of the two modes, but in nearly every case you
will want to use user-level security.

The printing command describes the local printing system type, which tells
Samba exactly how to submit print jobs, display the print queue, delete print
jobs and other operations. If your printing system is one that Samba doesn't
already know how to use, you can specify the commands to invoke for each
print operation.

Since no encryption mode is specified, Samba will default to using plaintext
password authentication to verify every connection using the standard UNIX
password utilities. Remember, if your Linux distributions uses PAM, the PAM
configuration must be modified to allow Samba to authenticate against the
password database. The Red Hat package handles this automatically.
Obviously, in many situations, using plaintext authentication is foolish.
Configuring Samba to support encrypted passwords is outside the scope of this
article, but is not difficult. See the file ENCRYPTION.txt in the /docs directory of
the Samba distribution for details.

The settings in the [homes] section control the behavior of each user's home
directory share. The comment parameter sets the string that appears next to
the resource in the browse list. The browseable parameter controls whether or
not a service will appear in the browse list. Something non-intuitive about the
[homes] section is that setting browseable = no still means that a user's home
directory will appear as a directory with its name set to the authenticated user's
username. For example, with browseable = no, when I browse this Samba
server I will see a share called jdblair. If browseable = yes, both a share called
homes and jdblair would appear in the browse list. Setting read only = no

means that users should be able to write to their home directory if they are
properly authenticated. They would not, however, be able to write to their
home directory if the UNIX access rights on their home directory prevented
them from doing so. Setting read only = yes would mean that the user would
not be able to write to their home directory regardless of the actual UNIX
permissions.

The following configuration section would grant access to every printer that
appears in the printcap file to any user that can log into the Samba server. Note
that the guest ok = yes normally doesn't grant access to every user when the
server is using user-level security. Every print service must define printable =

yes.

[printers]
 browseable = no
 guest ok = yes
 printable = yes

This last configuration snippet adds a server share called public that grants
read-only access to the anonymous ftp directory. You will have to set up the
printer driver on the client machine. You can use the printer name and printer

driver commands to automate the process of setting up the printer client on
Windows 95 and Windows NT clients.

[public]
 comment = Public FTP Directory
 path = /home/ftp/pub
 browseable = yes

 read only = yes
 guest ok = yes

Figure 3. Appearance of Samba Configuration in Windows Explorer

Be aware that this description doesn't explain some subtle issues, such as the
difference between user and share level security and other authentication
issues. It also barely scratches the surface of what Samba can do. On the other
hand, it's a good example of how easy it can be to create a simple but working
smb.conf file.

Conclusions

Samba is the tool of choice for bridging the gap between UNIX and Windows
systems. This article discussed using Samba on Linux in particular, but it is also
an excellent tool for providing access to more traditional UNIX systems like Sun
and RS/6000 servers. Further, Samba exemplifies the best features of free
software, especially when compared to commercial offerings. Samba is
powerful, well supported and under continuous active improvement by the
Samba Team.

Resources

John Blair When not evangelizing Linux, currently works as a UNIX and Windows
NT consultant for brainwell.com, inc. Amongst other services, brainwell.com
provides commercial Samba support. He can be reached at
john.blair@brainwell.com.

https://secure2.linuxjournal.com/ljarchive/LJ/051/2716s1.html

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Softfocus BTree/ISAM v3.1

Edmund P. Morgan

Issue #51, July 1998

Softfocus offers a low-cost solution (with source code) for your data
management needs.

• Manufacturer: Softfocus
• E-mail: jon@tap.net
• URL: http://www.greymatter.co.uk/gmWEB/Items/BND00133.HTM
• Price: single-user $115 US, multi-user $175 US
• Reviewer: Edmund P. Morgan

Developers, have you ever needed a way to store data without the overhead of
a RDBMS (relational database management system)? You are now in luck,
because Softfocus offers a low-cost solution (with source code) for your data
management needs.

Documentation

The documentation is supplied in the form of a 171-page manual, which is brief
yet packed with a wealth of knowledge and information. It provides a table of
contents, index and appendix. The manual starts with a explanation of the
BTree and ISAM (indexed sequential access method) concepts. The next section
links the concepts with instructions on implementing applications under this
product. Most of the manual is reserved for explaining the API (application
programming interface).

The manual provides you with the following information:

• Function parameter list
• Function return code
• Message text of the return code
• What the error implies

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Multi-user (multi-tasking OS) information about this function
• Location of the file pointer after a function call
• Other information and descriptions of the function
• Any changes from the last version

The manual also provides plenty of examples to guide you through the process
of building your application.

Installation

Installing this product is a snap—you just copy the files to your hard disk. All of
the source code, the Makefile, the configuration file and other files are available
to make compilation easy. The product supports a variety of C compilers and
environments, and assumes you are familiar with C. I have used this product in
various environments (i.e., DOS, Linux, Windows 95, Windows NT, HP-UX, DEC
UNIX, SGI Irix, Solaris and Dynix/PTX).

Software

The software distribution is comprised of over 120 files, including over 15,000
lines of source code. This product can support the following:

• Database file size limited by disk space
• Record size up to 65KB
• Virtually unlimited database files open at the same time (depending on

OS)
• Keys (string, integer, binary, long integer, floating point, user defined)
• One index or multiple indices
• Duplicate or non duplicate key values
• Ascending and descending index

The software via the API allows easy database application development, and
only one include file gives you access to the APIs. The APIs are divided into
three sections. The first is the high level ISAM APIs. The database layout is
based on C structures that you provide when building your application. These
APIs give you the ability to write programs without knowing the low level details
of database management. These APIs begin with the prefix “bt3” for the
function names. This scheme gives you quick access to information only
associated with these high level APIs. These APIs are appropriately named so as
not to divert your attention from your application. The API function names
include names such as create, open, add, close and delete. These functions
perform the following tasks:

• create: create a database.

• open: open a database.
• add: add a new record to a database.
• delete: remove a record from a database.
• close: close a database.

Many other ISAM APIs can help you search through the database, allocate
memory, lock and unlock a database or record, flush a record to the database,
etc. This product includes the variable length and low level BTree APIs. The
variable length API manages data with varying lengths. The low level BTree API
handles all of the database management details. When you use the ISAM APIs,
they call the BTree APIs. Since I have used only the ISAM APIs directly, I cannot
comment much on the use of the other APIs. Each API gives you access to the
following information:

• Function return code
• Message text of the return code

If the examples in the manual are not enough, the distribution comes with
plenty of demos and test programs to investigate. The distribution also includes
a utility to fix most problems associated with database indexing and corruption.
Typically, I call this utility once before manipulating an existing database.

Conclusion

I have been using this product for over five years. I would recommend it to any
developer who needs database management without the overhead of a
RDBMS. This product is lean, fast and does not require a lot of disk space. You,
as the developer, have complete control of your database management
application. This product is easy to port (recompile), and the manual provides
complete information. Also, no license is needed to distribute your application.
The best thing about Softfocus BTree is that, like Linux, source code is included.

Edmund P. Morgan has been involved in the computer industry as a software
developer since 1983. His favorite environment is Linux and C. His most
interesting project involves the current after hours work of automating the
entire information management infrastructure of his local church. And, of
course, Linux is the server OS and development environment of choice. He can
be reached at emorgan@cup.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Insure++

Jim Nance

Issue #51, July 1998

In order to combat the “creative user” problem, there is a type of program
which will take source code or object files and produce a version that analyzes
itself for bugs as it runs.

• Manufacturer: Parasoft Corporation
• E-mail: info@parasoft.com
• URL: http://www.parasoft.com/
• Price: $1,995 US
• Reviewer: Jim Nance

For the last four years I have worked as a programmer writing software to find
errors in integrated circuit designs. During this time I have learned a lot about
chasing bugs. Ideally, you want to find and fix a program's bugs before you ship
it to your customers. Remarkably, customers seem to be extremely creative
people who can figure out how to use (and break) programs in ways
programmers have never foreseen.

In order to combat the “creative user” problem, there is a type of program
which will take source code or object files and produce a version that analyzes
itself for bugs as it runs. The wonderful thing about this type of program is that
it allows you to find bugs that are not causing any visible problems, so that you

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

can fix them before they cause anyone trouble. We have found these programs
to be invaluable at work.

Parasoft Corporation produces one of these programs, which they market
under the name of Insure++. We recently evaluated the Solaris version of
Insure++ at work, and I was excited to learn that they also had a Linux version.

Getting Started

A few weeks later I got e-mail from a sales person at Parasoft. She introduced
herself and offered to put me in touch with their programmers if I had any
technical problems. She went on to tell me that their product currently only
worked with libc5 and not glibc, but that they were working on glibc support. I
was impressed with both her helpful attitude, and the fact that she knew about
glibc, which had only been available for two months.

A few days later Insure++ arrived at my house. The box contained a CD-ROM, a
10-page booklet with installation instructions and a 500-page user's manual. I
had the software installed on the computer within five minutes, even though I
had one minor problem with their installation script. I then called Parasoft to
get a license key. I was very impressed with the salesperson who answered.
After he gave me the key, he helped me create a $HOME/.psrc file, the startup
file for Insure++, and he walked me through one of the examples included on
the CD-ROM. Then he showed me a few features of the product and gave me
his telephone extension and told me to call him if I had any problems.

Learning about Insure++

Insure++ operates by taking your C or C++ source code and creating a new file
which contains your code plus some automatically generated statements. The
purpose of these statements is to analyze how your program is using memory,
function calls and variables, so that potential problems can be found. Insure+
+'s analysis is extremely detailed. It knows when you use uninitialized variables
or memory. It knows when there are no longer any pointers to allocated
memory (leaks). It knows when you reference past the end of an array or
structure. It knows when you call functions improperly. And it knows even
more. Insure++'s analysis is also very robust. It can handle programs that use
threads and programs that use memory obtained from files created by mmap

or SysV shared memory objects.

Insure++ is also easy to use. Instead of compiling your program with gcc, you
compile and link it with a program called insure. The insure compiler takes care
of generating the modified source files, compiling them with gcc and then
deleting them. It also does compile-time error checking. After the program is
compiled you run it in the normal fashion, and it runs as normal, except that it
is analyzing itself for errors. Errors found at compile or run time can be logged
to a file, to stderr or to stdout, and error messages can be customized in order
to be interpreted by programs such as Emacs. The default behavior is to send
error messages to an X11-based program called Insra. Insra displays the error
messages in an easy-to-understand manner, and it acts as an interface with
your editor. Insra can also save the errors, allowing you to reload them and fix
the problems later.

Most programs are not completely self-contained. Instead, they use code from
system libraries like the C library or the X11 library. In order to fully check your
program for errors, these libraries must be compiled with insure. Since most
people have no interest in recompiling something like the X11 library, Insure++
comes with precompiled versions of several system libraries including libc,
libm, libX11, libXaw, libXt and libdlsym. If you need to use a library that's not
included with Insure++, and you can't or don't want to recompile it yourself, you
can just link with the standard library. Insure++ will still be able to do some
error checking of the library functions, but it will not be as detailed or complete
as it would be if the library compiled with insure.

Installation

The first thing I did with Insure++ was to get out a Sunsite archive CD and start
compiling programs. This proved to be an excellent way to learn how to use the
product. All the programs I tried proved to be easy to compile. In each case, I
simply overrode the appropriate variables on the make command line to cause
the program to be built with the insure compiler and the -g debug flag. For
example, this command works with many X11 programs:

make CC=insure CDEBUGOPTS=-g

When make invokes the first insure compiler, the compiler starts up the Insra
GUI to display any problems Insure++ detects at compile time. All future
invocations of the compiler talk to the existing Insra process so you don't have
a new window popping up for each compiler process that runs.

After the program is built, you just run it as you always have. When it starts up,
it sends messages about any bugs it finds to Insra. Insra will display the source
code in which the error occurred and the stack trace when it occurred. If you
click on an element in the stack trace, Insra will start up your editor in the
appropriate file so you can fix the problem.

One thing you notice when running programs compiled with insure is that they
run much slower. I wrote a few test programs to try to quantify this
phenomenon. If a program sits in a tight loop, makes no function calls and does
not access any arrays, it does not slow down at all. If a program spends most of
its time calling functions or accessing arrays, it slows down by about a factor of
80. Most programs do call functions and access arrays, so you can expect to see
a significant slowdown. A good rule of thumb is every second of user time the
program usually takes is going to translate to a minute of user time with
Insure++.

I had a few minor problems with Insure++, such as Insra not being able to find
source code when that code was spread out in multiple directories. I was
always able to resolve these problems quickly by referring to the manual, which
is well-indexed and well written. In fact, it is written well enough that it is fun to
read even if you are not trying to solve a problem.

At one point I thought I had found a bug in Insure++. I had written the following
test program:

int main()
 {
 char *x = malloc(30);
 char z = x[1];
 char y = x[31];
 int zz;
 x[0] = 0;
 z += 3;
 free(x);
 zz = x[0];
 return z*z;
 }

Insure++ detected that I had accessed past the end of the x[]array when I
initialized y and that I had used x[] after I had freed its memory. However, it did
not detect that I had initialized z with an uninitialized member of x[] (i.e., x[1]
had not been initialized). I was excited because this omission gave me a chance
to try out Parasoft's technical support. I put the test program on one of my web
pages so I could show it to the people at Parasoft. I then called up the
salesperson who had provided my license key and told him I had found a bug.
He transferred me to one of their programmers. I gave the programmer the
URL where the code was, and he took a look at it while I was on the phone with
him. He told me that by default Insure++ does not check to see if variables less
than 4 bytes long are uninitialized. He then told me what to put in my .psrc file
to change this. Then he gave me his e-mail address and telephone extension so
I could contact him if I had any other problems.

I had three separate interactions with three different people at Parasoft, and
each interaction was very positive. I figured that people doing reviews for
magazines got VIP treatment, but I wondered how other people would be

treated. I found someone at work who had used Insure++ at a prior job, and I
asked him what he thought about Parasoft's technical support. He told me that
he also thought it had been excellent—so much for my special treatment.

Advanced Debugging

After I had gotten familiar with the basics of using Insure++, I decided to try
some of the more advanced features. The first one I investigated was the
interaction between gdb and programs compiled with insure. Insure does a
good job of hiding the modifications it makes to the source code from the
debugger. For the most part, you can't tell that anything is different. One thing
that is different is that the program will call the function _Insure_trap_error

whenever it detects a problem in your code. By setting a debugger breakpoint
in this function, you can get the program to stop each time Insure++ finds a
problem. Then you can use the debugger to examine your program's variables
and find out why the problem occurred. I tried this on a few programs and
found it to be a very useful feature. There are also other functions you can call
from the debugger to get information about which location in the program
memory was allocated for a variable and how much memory is currently
allocated.

Another feature I classified as advanced has to do with programs that use their
own memory managers. Insure++ knows about malloc, calloc, free, new, delete

and other standard memory management functions. This allows it to do in-
depth error checking when you use these functions. It is fairly common for
programs to have their own memory managers which allocate large blocks of
memory and dole it out themselves. In order to get detailed error checking for
these programs, it is necessary to teach Insure++ about your memory manager.
I did not do this myself, but the people evaluating Insure++ at work did, and
they indicated it was a fairly straightforward task. It is even possible to teach
Insure++ about functions that have nothing to do with memory management
and have it verify arbitrary things about the state of your program each time
the function is called.

An Example

https://secure2.linuxjournal.com/ljarchive/LJ/051/2951f1.large.jpg

Figure 1. Insra Window Showing Errors

Figure 2. Stack Trace at Memory Leak Location

https://secure2.linuxjournal.com/ljarchive/LJ/051/2951f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/051/2951f1.large.jpg

By now, I felt I knew enough about Insure++ to do an example for this review. I
selected a printed circuit layout program called pcb-1.3 in the apps/circuits
directory of sunsite.unc.edu. (There is a newer version of pcb available.) This
program consists of slightly over 600KB of source code, so it is a reasonably
complex program, even though it is by no means huge. When compiling the
program, Insure++ warned about several possible problems, but none of them
looked too serious. I then started up pcb using the example data that came
with it. I had no idea how to use the pcb software, so I just started clicking on
things. (This is usually an excellent way to find bugs.) After a few minutes of
playing with the program, I had six memory leaks and one NULL pointer
evaluation listed in the Insra window (see Figure 1). At this point, I clicked on
the error for line 1352 of the program action.c, and the screen shown in Figure
2 popped up. This shows the stack trace when the memory was allocated and
when it was leaked. If you click on the red arrows, the indicated source code will
be opened in your favorite editor. A quick look at the source code shows why
Insure++ is complaining. In the function ActionSave on line 1290 of action.c, the
program gets a file name from the user:

1289 case F_LayoutAs:
1290 name = GetUserInput("enter filename:", "");
1291 if (name)
1292 SavePCB(name);
1293 break;

This file name is contained in memory set by malloc, pointed to by the variable
name, a local variable in ActionSave. Later, at line 1352, we leave ActionSave:

1349 break;
1350 }
1351 }
1352 }

There is no code in ActionSave to free the memory pointed to by name. When
we leave the function ActionSave and the local variable name ceases to exist,
there is no way to access this memory anymore—it has been leaked. Insure++
is warning us about this situation.

In addition to several memory leaks, Insure++ found a bug in the program
related to using NULL pointers. It complained about this line:

469 return(&LineSortedByHighX[Layer][index2]);

I couldn't see anything wrong with this line by looking at it, so I restarted the
program in the debugger, using the _Insure_trap_error breakpoint I mentioned
earlier. When the program stopped, I examined the expression and it turns out
that LineSortedByHighX[Layer] is NULL. The reason the program does not crash
on this line is that we are taking the address of LineSortedByHighX[Layer]
[index2] rather than trying to dereference it. Presumably, at some later time,

some function will evaluate this address and crash. Insure++ makes it possible
to fix the problem and prevent a crash.

Conclusion

As you might be able to tell, I think Insure++ is a great product. It finds
programming errors better than any other product I have used, it runs under
my favorite operating system, and Parasoft's technical support is excellent.
There is one problem—it's expensive. The cheapest configuration you can buy
is a 3-user-node locked license, which costs $1,995 per node. Nothing I do on
my home computer is worth that much money, so I won't be buying a copy of
Insure++ for myself. I suspect that most people who program for fun will not be
buying a copy either. Who should buy Insure++ then? People, or more likely
companies, who do professional software development. When you are paying
programmers several thousand dollars a month and bugs cost big money to
deal with, then the price begins to look more attractive. When you consider that
Insure++ might enable you to ship your product earlier, it begins to look very
attractive. If you develop software for a living, you need this product. Insure++
runs under several flavors of UNIX and Windows too. In fact, anyone who is in
an environment where programming time is money should consider evaluating
Insure++. It is an excellent product.

Jim Nance (jlnance@avanticorp.com) works as a software engineer for the
Verification Products Division of Avant! Corporation in Research Triangle Park,
North Carolina. He has been using Linux since kernel version 0.12. In addition
to hacking Linux, he enjoys reading murder mysteries, getting bossed around
by his 3-year-old daughter, and spending time with his Sunday school class.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jlnance@avanticorp.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Combining Apache and Perl

Reuven M. Lerner

Issue #51, July 1998

This month Mr. Lerner gives us a look at mod-perl, a module for the Apache
web server.

The CGI (Common Gateway Interface) standard has been around for several
years and is beginning to show its age. CGI is great because all web servers
support it, programmers can write in any language, and programs can be
portable across a large number of platforms. Netscape's NSAPI and Microsoft's
ISAPI bind more tightly to their respective web servers, but programmers
interested in using these APIs are much more restricted than with CGI.

A particularly big problem with CGI is its inefficiency. Each invocation of a CGI
program creates a new process on the server. If you write CGI programs in Perl,
you are starting a new copy of Perl each time a CGI program runs, using
additional memory and processor time. Wouldn't it be nice if we could have the
flexibility of CGI programs without having to use all of those system resources?
Better yet, wouldn't it be great if we could use our existing CGI programs in
such a framework with little or no modification? The answer, of course, is “yes”;
even as hardware continues to get cheaper and more powerful, it seems silly to
be wasting memory and CPU time unnecessarily.

This month, we look at mod_perl--one of the proposed solutions to this
problem. mod_perl is a module for the popular and powerful Apache web
server, which runs on many operating systems including Linux. At the most
basic level, mod_perl makes it possible to run server-side Perl programs more
efficiently than when using the CGI protocol. However, mod_perl offers much
more than efficiency, as we will see. It also provides a full interface to the
Apache internals, giving Perl programmers a chance to modify the web server
itself.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Retrieving and Installing mod_perl

Apache modules are configured and installed at compile time. If you are
interested in installing mod_perl, you have to download and recompile the
source code in Apache. Luckily, this is rather easy to do. Note that while anyone
can download, configure and compile Apache, only someone with root access
can install Apache to its default position. If you don't have root access, you will
still be able to run, but only on an unrestricted port number, namely, one above
1024.

The latest version of mod_perl is always available from CPAN (Comprehensive
Perl Archive Network). At this time, the latest version of mod_perl is 1.10, which
means that you can retrieve it from http://www.perl.com/CPAN/modules/by-
module/Apache/mod_perl-1.10.tar.gz. Later versions will have the same URL,
with a different version number. In addition, try to use a CPAN mirror close to
you, rather than loading down www.perl.com; go to http://www.perl.com/
CPAN/ for help in finding one.

Once you have downloaded mod_perl, you will also have to download the latest
version of Apache, 1.2.6, from http://www.apache.org/ or one of its mirrors.
Unpack the Apache and mod_perl distributions in the same directory. On my
system, I did the following:

cd /downloads
tar -zxvf apache_1.2.6.tar.gz
tar -zxvf mod_perl-1.10.tar.gz

If you want to modify the default Apache module set, now is the time to modify
/src/Configuration. If you are not familiar with Apache configuration, don't
worry—things will work just fine without customizing the module set.

The rest of the Apache configuration and compilation is done within the
mod_perl directory. Move into the mod_perl directory (probably called
something like mod_perl-1.10) and type:

perl Makefile.PL

On my system, mod_perl asks me two questions:

Configure mod_perl with ../apache_1.2.6/src ? [y]

to which I press return, and
Shall I build httpd in ../apache_1.2.6/src for you? [y]

to which I press return again. This configures all of the files necessary for
building mod_perl and Apache. When the UNIX shell prompt returns, simply
type make and press return. The resulting Apache binary (httpd) will be in the

src subdirectory under the Apache directory. On my system, httpd resides in /
usr/sbin/httpd, so copying the resulting binary will replace the old Apache with
the new one.

Restart Apache by logging in as root and typing:

killall -1 -v httpd

Now, you're in business with your new version of Apache. If you're not sure
whether the new version has been installed, connect to the web server and ask
for its version information:

telnet localhost 80

After connecting, type:
HEAD / HTTP/1.0

On my system, I get the following response:
HTTP/1.1 200 OK
Date: Sun, 12 Apr 1998 19:02:41 GMT
Server: Apache/1.2.6 mod_perl/1.10
Connection: close
Content-Type: text/html

In other words, the web server running on port 80 (the default port for HTTP
traffic) is running Apache 1.2.6, with mod_perl 1.10 compiled in.

Configuring Apache for mod_perl

One of the most popular uses for mod_perl is as a fast replacement for CGI. In
order to use it this way, we need to modify Apache's configuration files, so it
knows how to handle programs that use mod_perl.

Why must Apache know how to treat these programs? Thinking about CGI
programs should make it clear. Browsers request CGI programs in exactly the
way they request static documents. The browser does not know whether a
given URL points to a program or a static document; that determination is
made by the server. If the request is for a static document, the server returns
the document verbatim to the user's browser. If the request is for a program,
the server executes it and returns any output to the user's browser.

In both of these cases, the browser's behavior is the same: it sends the request
to the server and displays the contents of any received response. This places
the onus on the server to recognize which files are to be transmitted verbatim,
and which are programs whose output will be sent as a response. Apache lets
us choose between allowing CGI programs to be located anywhere on the
system (as long as they end with an agreed-upon suffix, such as .pl or .cgi) and

requiring that they be located in one or more designated directories. This is
done using directives in the Apache configuration files.

Now that we have added mod_perl to our server, we must tell Apache how to
handle three types of URLs: static documents, CGI programs and mod_perl
programs. Adding mod_perl to the mix does not have to change the existing
configuration on your system. I created a directory named perl-bin under my
web root directory (/home/httpd/perl-bin) and decided all mod_perl programs
would reside there, just as all CGI programs reside in cgi-bin. I then added the
following lines to my server's srm.conf file:

<Location /perl-bin>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGI
</Location>

The <Location> and </Location> tags indicate that we want our settings to take
effect for a particular directory, rather than the entire Apache server. Then, we
tell Apache to treat documents in the perl-bin directory as Perl scripts, rather
than static documents or something else. If you are curious, the Apache
manual has an entire section describing handlers, including the AddHandler

and SetHandler directives that allow us to configure file types according to
location or file extension. Other handlers, for instance, include cgi-script (for
CGI programs), server-info (for information about the server) and imap-file (for
image maps).

Now that Apache knows which files in /perl-bin should be considered mod_perl
programs, we must tell mod_perl how to handle these Perl documents. We will
use the Apache::Registry module, which allows us to run CGI programs. Finally,
we will use the Options directive to allow CGI programs to be run within this
directory.

Finally, we make one last modification to srm.conf, telling mod_perl to produce
HTTP headers. We do that outside of the <Location> directive, since we always
want mod_perl to return complete headers. The line to add is:

PerlSendHeader On

Adding the PerlSendHeader directive does not relieve us from the responsibility
of indicating the type of content we are returning. In other words, we still must
add the “Content-type” header to the top of our output, just as we do when
writing CGI programs.

Basic Programs with mod_perl

All the pieces are now in place to use mod_perl instead of CGI programs. Let's
try a simple program that prints out the current state of the environment. Copy
the following into a file called test.pl in the perl-bin directory:

use strict;
print "Content-type: text/html\n\n";
foreach my $key (sort keys %ENV)
{
print "\"$key\" =
\"$ENV{$key}\"
\n";
}

Set permissions so that the file is executable, and ask your browser to retrieve /
perl-bin/test.pl. If all goes well, you will see a list of environment variables in
your browser.

If you have been writing CGI programs (or using Perl for any length of time),
then the above might seem strange. For example, where is the initial line
indicating the location of the Perl interpreter, as well as its switches? The initial
hash-bang (#!) syntax which we are so accustomed to is missing because it's
unnecessary. That two-character code tells the UNIX shell that it shouldn't try to
interpret a program (i.e., as a shell script), but rather that it should give the
responsibility to another program. That's why Perl programs usually begin with
the line:

#!/usr/bin/perl

while Tcl programs begin with:

#!/usr/bin/tclsh

and so forth. Because our program is run by mod_perl and mod_perl
understands Perl programs, we don't need the hash-bang syntax at the top of
our program.

Command-line switches raise a more subtle issue, one that cuts to the heart of
mod_perl's advantages over standard CGI programs. Programs run much faster
under mod_perl for several reasons, but the two primary ones are that Perl is
embedded in Apache (saving the overhead of starting Perl with each
invocation), and programs are compiled once, then cached (saving the
overhead of compilation with each invocation). The combination of embedding
Perl within Apache and caching compiled programs can mean a tremendous
boost in execution speed, often ranging from 400 percent to 2000 percent.

There are tradeoffs for these increases in speed, and one of them is that
command-line switches no longer work as expected. Switches are handled at

compilation time, so if you expect switches to work each time your program is
run, you will be disappointed. However, all is not lost. Programmers interested
in turning on Perl's warnings (the -w flag) and security checks (the -T flag, for
tainting) from within mod_perl programs can do so with a directive inside of the
srm.conf file. To turn on warnings, you simply add the line:

PerlWarn On

This has the effect of turning on warnings from within your programs. As usual,
warning messages are sent to the Apache error log.

By the same token, you can activate Perl's security checks (commonly known as
“tainting”) by adding the PerlTaintCheck directive inside of srm.conf:

PerlTaintCheck On

When you write CGI programs (or any other programs, for that matter) in Perl,
it is usually a good idea to include the use strict directive, as we saw in the
above example. When programming with mod_perl, however, it is extremely
important to use strict. Otherwise, variable definitions may remain in memory
after your program exits, creating problems for future invocations of this or
other programs.

By the same token, do not use the exit function to leave your program
prematurely. Normally, calling exit from within a CGI program will end the
program—not a bad thing, if it has already produced all of its output. If you call
exit from within a mod_perl program, the program takes Perl along with it; and
since Perl is embedded within the copy of Apache, killing Perl effectively kills
that particular server process as well. If you absolutely must call exit from
within your program, use Apache::exit instead; it will do what you want without
unexpected side effects.

CGI Programs with mod_perl

Now that we have gone through a basic introduction to mod_perl and writing
CGI-style programs with Apache::Registry, let's look at an example of CGI
programs under mod_perl—a simple guest book program that takes form
parameters and appends their contents to a file on the system. The form is
shown in Listing 1. Note that the form looks just like the forms we have seen in
the past. The sole difference is our form's action, which sits in perl-bin rather
than the usual cgi-bin.

The program is shown in Listing 2. If we were to add a “hash-bang” first line to
this program, it would operate equally well under CGI or mod_perl
environments. We use CGI.pm to retrieve information about the submitted

https://secure2.linuxjournal.com/ljarchive/LJ/051/2974l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2974l2.html

form. While this works just fine for recent versions of CGI.pm, earlier versions
are not completely compatible with Apache::Registry.

The main difference between the program in Listing 2 and its CGI counterpart is
speed. While I cannot give exact numbers, my subjective tests showed the
response from mod_perl to be almost instantaneous, with the CGI version
taking noticeably longer—perhaps up to one second. This might not seem like
much, but the combination of a cached CGI program with an already-running
version of Perl is impressive, even with a short program that compiles quickly.
As you can see, it does not require many changes to your original program.

A non-CGI use of mod_perl

So far, I have mentioned mod_perl only as a replacement for CGI. However,
mod_perl is much more than that; it gives you a Perl interface to the guts of
Apache. If you have configured your server correctly, you can modify every
aspect of Apache using a Perl program. Better yet, some enterprising souls
have already spent time writing modules which do just that. For example, the
Apache::Status module allows you to take a look at the current state of
mod_perl running on your server. Apache::Status comes with mod_perl and is a
good example of what can be done with this package.

As was the case with Apache::Registry, we are going to have to set the handlers
for a particular directory. In this case, the directory does not have to physically
exist on the disk, since the URL is interpreted before a file is ever opened. You
must add these lines to your srm.conf file in order to get the Perl status:

<Location /perl-status>
SetHandler perl-script
PerlHandler Apache::Status
</Location>

As was the case with Apache::Registry, we set the Apache handler to be perl-

script. Since we want Apache::Status to be handling the perl-status directory,
we point to it as our PerlHandler.

If you put the above lines in your server's srm.conf file and restart the server,
anyone requesting /perl-status from your server is going to have access to
information about your server. If you would prefer to keep such information
private, you must use access controls, as shown in the following example:

<Location /perl-status>
SetHandler perl-script
PerlHandler Apache::Status
order deny,allow
deny from all
allow from 127.
</Location>

This allows you to retrieve status information from the server computer itself;
attempts to retrieve /perl-status from another computer will be greeted with an
“unauthorized access” message.

What Next?

I have been surprised and impressed by mod_perl's speed and flexibility, and I
expect to use it more and more as time goes on. The fact that it can run most
existing CGI programs without modification is a great boon to those of us who
already have a stockpile of such programs.

mod_perl is not a panacea, of course. Its speed comes at a price; namely,
greater demands for system memory. The inclusion of Perl (a known memory
hog) inside of Apache means that the httpd processes on your server will start
off larger than otherwise. Over time, each server process will grow, as compiled
Perl programs are cached in memory. Before you use mod_perl on your
system, you should make some calculations regarding the amount of memory
that Apache is using; this may affect the number of server processes you want
to run on your system.

Nevertheless, mod_perl is a tremendous advance for both Apache and Perl and
promises to get much better with time. Next month, we will look at some of the
ways in which mod_perl can speed up our database connections, making
Apache an even better server for dynamic sites dependent on relational
databases.

Resources

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the Web since early 1993. In his spare time, he cooks, reads and
volunteers with educational projects in his community. You can reach him at
reuven@netvision.net.il.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/051/2974s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Letters to the Editor

Various

Issue #51, July 1998

Readers sound off.

Satellite Remote Sensing

I have just received the April 1998 issue of Linux Journal. My highest regards for
such an informative article as “Satellite Remote Sensing of the Oceans” by S.
Keogh, E. Oikonomou, D. Ballestero and I. Robinson. My attention was held very
closely by the details and explanations written in this article. I'm well aware of
the problems in remote sensing systems, and the potentially enormous
amounts of data which must be manipulated in order to make sense of it. This
was great! Find more authors like them.

—Bill Staehle staehle@netvalue.net

Kernel Korner

First let me congratulate all of LJ's editors. I am staying up hours to digest and
learn all I can possibly read. It is really wonderful to have a chance to learn so
much.

Here I am referring to “Writing a Linux Driver” by Fernando Matía. I find it to be
a good foundation for device drivers. An added reference for anyone who
would like to look into drivers further is Writing A UNIX Device Driver by Janet
Egan and Thomas Teixeira (John Wiley and Sons, 1988). Even though it is for
UNIX, it proves very useful for Linux. Thanking you and Fernando Matía.

—Silvio agola@grumpy.igpp.ucla.edu

About Issue 47 (GUI)

I have subscribed to your wonderful magazine since 1995 and I have found it to
be useful, informative and fair. But I must tell you my disappointment about

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

your graphical user interfaces issue, March 1998.a) XView is old and passing out
of favor, even though it is still useful.b) CDE is proprietary.c) TkDesk is nothing
more than an elaborate file manager.d) GTK and GNOME are by no means
ready for production machines.

You failed to mention the wonderful, useful, highly advanced KDE project (see
http://www.kde.org/), despite the fact that it is in the beta three stage. I have
installed it on production machines in radiological clinics under both Linux (x86
architecture) and SunOS. I wonder why you did not dedicate a few lines to a
project like KDE—in my opinion, the only runner capable of stopping the wave
of Microsoft's products. If libQT licenses are the problem, it is inconsistent with
the presence of articles on all-commercial products like CDE and X-Designer/
Motif, since libQT is free for free Linux development. Please reconsider this
position and take a look at KDE.

Thank you very much for your consideration and keep up the excellent LJ--I love
it.

—Daniel Benenstein dbenenst@cs.com.uy

There was no conscious decision on my part to snub KDE. In fact, I had a KDE
article scheduled, but it came in after the deadline and the issue was already
full. I plan to run this article in the near future. The May issue does have a short
comparison review of both KDE and GNOME in the Linux Gazette column —
Editor

Dealing with Cookies

The most elegant method for dealing with cookies is simply to symbolically link
the cookie file to /dev/null, like so:

ln -s ~/.netscape/cookies /dev/null

This has the effect of accepting all cookies, so you are not denied access to any
web sites, but immediately funnels them into a black hole. Having /dev/null
“world readable” is infinitely preferable to disclosing your browsing habits to
webbots.

—M. Leo Cooper thegrendel@theriver.com

About Ghostscript

I have been reading LJ (which I find very nice) for three months. I have learned
different things (as I do from any journal), but I have also found some bugs. In

the article “Ghostscript” by Robert Kiesling (March 1998), there are two points I
do not agree with.

The author says that it is not possible to see .eps files included in LaTeX files
with xdvi. I say: wrong. I use LaTeX2e and xdvi almost every day, and I can see
the .eps files through xdvi. (I cannot zoom, but I can see what is displayed,
which is usually enough.) The .eps files I use are generated by xfig and transfig.

The author says that gs used with device X11 will create a window. I have tried
this, and the X11 device is not a default one for gs 4.xx. I can see my .ps files
with gs, but I must use Ghostview as the GUI. I do not think that the
programmers have taken the X11 device away from version 3 to version 4. Has
the author made a mistake in his script files?

I am using Red Hat 4.0 (with a lot of patches and a Slackware-like installation)
but my LaTeX2e, xdvi and Ghost(script/view) are original and standard ones, so
I should be able to do what the author mentioned, but I cannot.

—Raphael Marvie marvierx@cs.man.ac.uk

I have to blame my use or installation of xdvi for the inability to print \special
commands. The distribution on which the article is based has been upgraded
several times now. I've received plenty of mail from TeXperts saying they have
no problem with reproducing EPS graphics on screen.

The X11 driver is standard in every recent version of Ghostscript, but it is not
necessarily the default. It can, however, be specified on the command line with
the parameter -sDEVICE=X11. During the process of building Ghostscript, it and
all of the other supplied driver code can be specified in the Makefile.

—Robert Kiesling kiesling@terracom.net

PhotoShop

I noticed in your April edition, you used PhotoShop to create the cover image. I
understand that at SSC you use non-Linux systems for some of your graphics
and page layout. Wouldn't it be nice if you could do it all in Linux? I think the
GIMP is great, but nothing on Linux compares with PhotoShop.

The only thing to do is to port PhotoShop (and possibly Framemaker) to Linux.
Adobe is aware of the desire for such products, and even confronts it on the
following web pages: http://www.adobe.com/supportservice/custsupport/
QANDA/259e.htm and http://www.adobe.com/supportservice/custsupport/
QANDA/2bf6.htm I believe if enough people show an interest, Adobe will

eventually come around. What a great day that will be for Linux! Adobe asks
that we send all suggestions of this nature to:

Adobe Systems, Inc.PhotoShop Product Management345 Park AvenueSan Jose,
CA 95110-2704

I hope that many of you will send requests to Adobe to let them know how you
feel.

—Jason F.jasonf@usi.net

APO Mailing

I'd like to ask in an open forum that computer product resellers, and Linux folks
specifically, allow for U.S. forces overseas to have better web commerce access.

Although we can often order products, many web-based address databases are
unable to accept an APO/FPO address. There also seems to be a small lack of
understanding of how mail from the U.S. is delivered to troops stationed
overseas.

When a package is sent to an APO/FPO address, it is carried by U.S. Postal
Service mail to one of three military postal offices. New York serves European
troops, Miami serves troops in the southern hemisphere, and San Francisco
serves the Pacific installations. There is no additional cost to the shipper—the
military picks up the tab as soon as it gets to the APO/FPO. If the city is added
to the address, it can have terminal effects on packages, many of which never
arrive or are bounced around several places. We cannot receive mail from
either FedEx or UPS.

There are web commerce servers that provide for this type of addressing, but
more need to be available. I appreciate the efforts of the web maintainers in
keeping good commerce available and ask for this request to be considered.

—Leam Hallgers hom@spidernet.it

Lost & Found

Write us at info@linuxjournal.com or send snail mail to Linux Journal, P.O. Box
980985, Houston, TX 77098. All published letters are subject to editing.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/051/2957s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

COMDEX/Spring 1998

Jon “maddog” Hall

Issue #51, July 1998

Vendors around us were astonished by the attention and business we drew to
our booths.

Photo Album

COMDEX in Chicago (April 20-23) was a titanic Linux hit. Vendors around us
were astonished by the attention and business we drew to our booths.

The Linux Pavilion had a huge sign overhead (thanks to Carlie Fairchild of Linux
Journal and Andy Wahtera, our new ZD/COMDEX representative), and multiple
large floor signs guided people entering COMDEX to the Linux International
Pavilion. We had a page on the COMDEX web site, mention in the Show Daily
and other marketing “aids”.

Linux International vendors with booths in the Pavilion were Caldera, S.u.S.E.,
InfoMagic Inc., Linux Journal and Red Hat Software, Inc., a small number of
vendors, but big in heart.

While smaller in attendance than its Las Vegas cousin, COMDEX in Chicago
seemed to have a lot more end-user customers than the Las Vegas show—not
really surprising when you consider Chicago is a cultural, economic and
manufacturing center. While Mr. Bill was still trying to boot Windows 98 and
have it stay up, the Linux International Pavilion was singing a sweet song. Some
people thought we had set a new world's record for “longest line at COMDEX”--
the line where people waited to pick up a free Linux CD-ROM.

I accompanied Red Hat's “booth gang”, Anna, Terry and Mike, to visit the
Argonne National Laboratory and Western Suburban Chicago Linux Users
Group (which thankfully is abbreviated AALUG and has its web site at http://
hydra.pns.anl.gov/lug/lug-main.html). The meeting was actually held at the
Fermi National Lab, which recently announced that Linux will be officially

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/051/2982s1.html

supported at their laboratory and with their applications. Donnie Barnes flew in
from Durham, North Carolina to give a talk on Red Hat 5.0, and to help give out
Red Hat “souvenirs”. I gave a brief talk at the end of Donnie's epic speech.

After the meeting ended, Dr. G. P. Yeh, a physicist in the computing division,
invited us on a tour to see a particle-collider detector. Fermi is expanding their
collider, and the new one is expected to produce more than 20 times the data
of its predecessor. To expand the computing power to analyze and store this
data in real time with traditional methods would have been very costly, so now
Fermi is building a 1000-node Beowulf system to detect quarks (and other little
things). Dr. Yeh told us that without Linux and the concept of Beowulf systems,
the costs of supplying computer power for the next generation of collider
would be many times what they are now forecasting.

Our sincere thanks to Dan Yocum for setting up the meeting at Fermi and
advertising it, and to Dr. Yeh for showing us the collider.

On Wednesday S.u.S.E. gave a talk at the Chicagoland Linux Users Group, and
on Thursday I gave a two-hour “ramble” to the same group after COMDEX was
over. Then, tired and thirsty, most people retired to the Goose Island Brewpub.

The Chicagoland Linux Users Group (http://clug.cc.uic.edu/) helped to staff the
Linux International booth, hand out flyers and line up user group meetings. So
“thank you” to Clyde Reichie, Don Weimann, Simon Epsteyn, William Golembo,
Gennagy “Ugean” Polishchuk, Long Huynh, Perry Mages, Viktorie Navratilova,
Ben Galliart, Richard Hinton, and especially to Dave Blondell, the president, who
organized the group and the schedules.

Linux International would like to encourage other Linux vendors to join us in
the next Linux Pavilion at COMDEX, whether it be in Las Vegas or Chicago. We
are definitely looking forward to the next COMDEX in the windy city. For
information on membership or other information about Linux International,
visit our web site, http://www.li.org/.

Jon “maddog” Hall is Senior Leader of Digital UNIX Base Product Marketing,
Digital Equipment Corporation. He is President of Linux International.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

lex and yacc: Tools Worth Knowing

Dean Allen Provins

Issue #51, July 1998

Today, computers can talk and they can listen—but how often do they do what
you want?

This article is about how Linux was used to program a Sun machine to
manipulate well-log recordings to support finding oil and gas exploration in
Western Canada. It will describe the problem, provide enough background to
make the problem understandable, and then describe how the two fascinating
UNIX utilities lex and yacc were used to let a user describe exactly what he
wanted to satisfy his particular need.

Some Background

In the fall of 1993, I had been recently downsized and was approached by a
former colleague for assistance. He, and another former colleague, both of
whom were still with my last employer, were what is known in the industry as
well-log analysts.

To understand what a log analyst is requires a little knowledge of oil and gas
exploration methods. Energy companies, as they like to be known, employ
several different categories of professionals to assist them in finding salable
quantities of hydrocarbons. Chief among these are the geologists and
geophysicists (of which I am one) who study the recordings made in bore holes,
or process and examine seismic recordings to identify what are popularly
known as “plays” or “anomalies”.

Bore holes are simply the holes left when a drill rig moves off the drilling
platform. Generally, these holes are logged by service companies who lower
instruments called tools into the hole, and who then record on magnetic tape
the readings made by those instruments.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

There are many different types of tools, including sonic (which measures the
time needed for a pulse of sound energy to travel through the rock wall from
one end of the tool to the other), density (a continuous recording of the rock
wall density), and gamma ray (a measure of gamma radiation intensity in the
rock). These are just a few of the types of measurements that are made,
recorded and called logs.

The various logs are examined by geologists to gain an understanding of what
was happening when the rocks forming the bore hole were laid down, and
what has happened to them subsequently as shallower rocks were created
above them.

Geophysicists are more inclined to study seismic recordings which in essence
are indirect measurements of the properties of the rocks forming the
subsurface. Geophysics and Linux will not be discussed here, but you may find
Sid Hellman's “Efficient, User Friendly Seismology”, Linux Journal, August 1995,
Issue 16 of interest.

While seismic recordings provide much greater volumes of interpretable data
over large areas, well logs are definitive measurements made at single
locations, sometimes close together, and sometimes not. Geologists often
correlate adjacent well logs to create cross sections of the subsurface, much
like seismic recordings would provide. Detailed interpretation of individual logs,
however, is often left to the log specialists.

The Problem

My two acquaintances were log specialists who wanted an additional tool to
assist them in the processing and interpretation of individual or combinations
of logs. Specifically, they wanted to tell the computer to perform arithmetic
operations on individual or some algebraic combination of logs.

For example, they might need to scale a specific log by an arbitrary amount, say
1.73. In another case, they might want to divide one log by another, and then
add the result to a third, all before adding a constant and then raising the
resulting values to some arbitrary power.

Keeping in mind that logs are composed of individual sample values taken as
frequently as every few inches (or centimeters as they are here in Canada and
many other places in the world), these example requests would mean a
reasonable amount of computation, multiplying every sample of thousands of
meters of recorded log values by 1.73, in the first example. The simple scaling
problem isn't particularly difficult, but identifying the desired log could be.

The energy company for which my acquaintances worked was using a simple
filing method for all the log curves (a curve corresponds to all the recorded
samples for one tool in one bore hole) wherein each curve was identified by a
name. To this was added some additional information on units and so on, plus
all the samples for all the curves for the well. All the data were stored as ASCII.
(The file format is known as Log ASCII Standard format, or LAS version 2.0, and
although the names for curves were generally the same from well to well, that
was not guaranteed.)

As a result, more complicated combinations of curves required a fairly
sophisticated and robust mechanism for arbitrary name recognition, while the
desired algebraic operation was being described. Given such an interesting
challenge, I recognized an opportunity to put some relatively little-used tools to
work: lex and yacc.

The Tools

The program lex is a lexical analyzer. Lexical analysis is the recognition of words
in a language. As used in this particular application, lex, or more specifically
flex, is used to recognize characters forming the names of log curves,
arithmetic operators and algebraic groupings.

flex is a particular example of the lexical analysis programs available for UNIX
systems and is the implementation delivered with Linux distributions. The
original implementation was done by Mike Lesk and Eric Schmidt at Bell
Laboratories and is documented in the book lex & yacc by John R. Levine, Tony
Mason & Doug Brown, O'Reilly & Associates, Inc., 1992.

yacc is a language parser. It accepts word items and, given a list of rules
describing how these items form larger entities, deduces which items or
combinations of items satisfy a rule. This can also be thought of as grammatical
analysis. Once a rule is satisfied, a programmer's code is applied to the result.

In the case of English, the words in a sentence can be assigned grammatical
types such as noun, verb, adjective and so on. Particular combinations of words
form more complex units and these in turn can be described as complete
sentences.

For example, the sentence “The lazy dog lay in the sun,” is composed of an
article “the”, a preposition “in”, adjective “lazy”, nouns “dog, sun” and a verb
“lay”. Combinations of these grammatical items form more complex entities
such as noun phrases “The lazy dog” and “in the sun”. The first noun phrase is
the subject of the sentence, and the second, in combination with the verb,
forms the predicate. Together they form a complete sentence.

It is possible to form parsers for the English language, although given English's
many idiosyncrasies, yacc may prove to be inadequate for the task. It may also
be that the yacc programmer may become exhausted in trying to describe all
the nuances of the language.

yacc was originally developed to provide a mechanism to develop compilers,
but it could just as easily be used to create interpreters. For example, BASIC is
often an interpreted language and could easily be described by a yacc
grammar. Once yacc understood a particular line of BASIC code, it could cause
the execution of the equivalent instructions in the native language of the host
computer.

Some Linux distributions provide a choice of yacc programs. One can install
either (or both) Berkeley yacc or the GNU bison program. You'll probably find
them in /usr/bin. They are quite similar; bison was originally derived from yacc,
although there has been some divergence over the years.

The combination of lex, yacc and some programmer's C code provides a
complete means to interpret and act upon a user's wishes. The lex program
uses its regular expression interpretation capability to recognize strings of
characters as words or tokens. (The term “words” is used loosely to describe
any recognized string of characters.) Once a token is identified, it is passed to
yacc where the various rules are applied until some combination of tokens
form a recognizable structure to which yacc applies some pre-programmed C
code.

How The Tools Are Used

As indicated, lex uses regular expressions to recognize strings of characters as
items of interest. Regular expressions are composed of special characters
which describe acceptable combinations of characters.

For example, regular expressions often use the character . (period) to indicate
that any character except a newline (\n) is acceptable.

Similarly, the characters [and] (square brackets) are used to indicate
acceptance of any of the characters enclosed within them or within the range
of characters described between them. For example, the expression [abc] says
to accept any of the characters a, b or c; the expression [a-c] says the same
thing. A more complicated example might be [a-zA-Z0-9] which says to accept
any alphanumeric character.

For a complete description of lex regular expression syntax, see lex & yacc by
Levine, Mason and Brown (O'Reilly, 1992).

Once a regular expression matches the text stream being interpreted by lex,
code created by the programmer is executed. When used with yacc, this code
generally amounts to passing an indication of what was just recognized to yacc
for further processing. The indication is a token that yacc knows about, and in
fact, these are defined in the yacc portion of the analyzer/parser program so
that they are common to both lex and yacc.

Also as indicated, yacc uses a grammar description to decode the meaning of
the tokens that lex passes to it. As tokens are passed to yacc, it applies its rules
until a single token, or some sequence of tokens, becomes a recognizable
structure.

Before a programmer's C code is executed, though, yacc may require several
structures or token-structure combinations to be recognized. For example,
using our sample sentence, our rules might look like the following:

sentence : subject + predicate
{...execute some C code...}
subject : noun
 | noun_phrase
predicate : verb + noun_phrase
noun_phrase : preposition + adjective + noun
 | adjective + noun

The first rule says that a sentence is made up of two parts: a subject followed
by a predicate. If that rule is satisfied, then the C code between the curly
brackets will be executed. To satisfy the first rule, yacc has to recognize both a
subject and a predicate. The subsequent rules help yacc to do just that.

For example, the second rule says that a subject is recognized when either a
noun or a noun phrase is recognized. A noun is the smallest unit that yacc deals
with, and in the yacc grammar, a noun is a token that yacc will want to have lex
recognize. Thus, somewhere in the yacc program, a token will be defined
(probably called NOUN) that lex and yacc will use to communicate the fact that
a noun has been interpreted. How this is done we will see shortly.

Notice that a noun phrase is also used to create the predicate. If a verb is
recognized and it is followed by a noun phrase, the predicate is identified. If
only the noun phrase is identified, then the subject has been identified.

The example cited is not in yacc syntax, but is meant to provide understanding.
Very detailed examples may be found in the references.

You may be wondering how the yacc parser actually works. yacc works as a
finite-state machine, and it has a stack (think of this as a memory of what has
been seen, as it tries to deduce what the incoming stream of tokens
represents).

A finite-state machine records its current condition as each recognizable item is
interpreted. For example, as a noun phrase is being interpreted, it moves from
state 3 when it receives a preposition to state 4 when the adjective is
interpreted and finally to state 5 when the noun is recognized. When the entire
phrase has been recognized, it switches to another state, perhaps 37, to note
that fact. Please do not attach any particular meaning to the numbers used in
this example. They have been chosen arbitrarily to demonstrate how yacc
progresses as it interprets the tokens received from lex. You should conclude
only that to reach state 5 (noun phrase), yacc must progress through several
preceding states, each of which might lead to another final state, depending on
the grammar yacc is using.

In other words, given its current state, yacc requests from lex the next token (if
it needs it) and places onto the stack its new state. In doing so, it may push the
new state onto the stack (as when interpreting the noun phrase), or pop the old
state off the stack, replacing it with a new state (as when the noun phrase is
completely recognized). These actions are called “shift” and “reduce” and
describe pushing and popping states to and from the stack.

When the sentence is finally recognized, yacc accepts it and returns to the
calling program (the main program which invoked yacc and indirectly lex). For a
complete description of how a yacc parser works, see Inside Xenix by
Christopher Morgan, Howard W. Sams and Co., 1986. This reference describes
yacc grammars and how yacc parses its input in exquisite detail.

Basic Coding of lex and yacc Programs

Both tools are coded in a similar manner. There are three sections in each
program: declarations, rules and user routines. Each is separated by a line
containing only the two characters %%.

For yacc, the declarations section contains the tokens it can use while parsing
the input. Each has a unique value greater than 256, and the set of tokens is
introduced via %token at the beginning of the line. lex can use the declarations
section to define aliases for items that it must recognize while looking for
tokens to pass to yacc.

For example, lex needs to know about white space which, while not used in
identifying tokens, must be accounted for in some way. Similarly, mathematical
symbols such as + or = must be recognized. These are needed in the
interpretation of the algebraic statement coded by the user.

Within the rules section, yacc holds its parsing intelligence. This is the section
that contains the grammar rules referred to in the English sentence example
earlier. In fact, the coding used earlier is typical of a yacc grammar: items to be

recognized are separated from the means to recognize them by a colon (:), and
alternative means of recognition are separated from each other via a pipe (|)
symbol.

lex uses the rules section to contain the regular expressions that allow it to
identify tokens to pass to yacc. These expressions may be the aliases from the
declaration section, regular expressions, or some combination.

The last section contains C code which may be invoked as each of the tools
processes its input.

One requirement is that the yacc tokens be known to the lex program. This is
accomplished by including the following statement:

#include "y.tab.h"

in the lex declarations section and creating it when compiling the yacc program
code.

Compilation is accomplished in the following way:

yacc -d yacc.file -create 'y.tab.c and y.tab.h'
flex flex.file -create 'lex.yy.c'

The -d option on yacc's command line creates the y.tab.h file needed by
lex.yy.c.

How lex and yacc were employed in Log Analysis

To successfully interpret the user's desired process, the program needs to
know which well logs were available for processing. This information is
available in the ASCII file selected by the user. This text file contains a one-to-
one correspondence between curve description and data values. A very small
subset of a typical file is shown in Listing 1.

Listing 1

As can be seen, there are several sections including well information (includes
some hole parameters), curve information (notes which curves are in the file)
and “A” which holds the recorded data values. Each is introduced with a tilde
(~). Because the format of the file is fixed by convention, these are easily
parsed, and needed values are stored for subsequent processing.

As written for the client, the program is a Motif application. The user selected
the file to be processed; it was read in its entirety and numeric text items were
converted to double-precision values.

https://secure2.linuxjournal.com/ljarchive/LJ/051/2227l1.html

Besides allowing file and curve merging and editing, there is a menu item for
curve processing. Upon selecting this menu item, a dialog box is presented
containing a list of available curves and arithmetic operations. The user selects
curve names, numeric constants and operations which in turn are displayed as
an algebraic operation on a text input line. When satisfied with the
mathematical operation, the user clicks OK and the lex and yacc magic occurs.
The result is stored as a separate curve and can be included in subsequent
operations.

lex processed the incoming algebraic statement with the code shown in Listing
2.

Listing 2

Between lines 1 and 16 are declarations to be used in the program generated
by lex. In particular, you will notice the inclusion of the header file y.tab.h which
contains the following definitions:

#define INTEGER 257
#define FLOAT 258
#define DOUBLE 259
#define NUMBER 260
#define VARIABLE 261
#define EQUAL 262
#define LPAREN 263
#define RPAREN 264
#define PLUS 265
#define MINUS 266
#define TIMES 267
#define DIVIDE 268
#define RAISE 269
#define LHS 270

These definitions are used by both lex and yacc to describe the items yacc
expects to receive from lex. They are generated by statements 73 to 77 of the
yacc source which will be examined shortly.

From lines 17 to 31 of the lex listing are declarations which amount to aliases
for common items that we wish lex to recognize. For example, we declare DIGIT
to be any single numeric between 0 and 9 on line 21. Doing this allows us to
declare INT (an integer) to be one or more DIGIT's.

Lines 33 to 90 contain the rules by which lex interprets incoming text items. For
example, on line 34 we recognize an equal sign (=) and return the token EQUAL
to the caller. In y.tab.h, EQUAL is defined to be 262.

As you can see, the lex rules simply recognize text items and then advise the
caller what was seen in the input stream.

Listing 3

https://secure2.linuxjournal.com/ljarchive/LJ/051/2227l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/2227l3.html

yacc interprets the token stream passed to it by lex with the following code,
only a subset of which is shown in Listing 3. The code for the yacc routine (with
the calling subroutine do_arithmetic and its accessory functions) was in excess
of 900 lines. For those interested, it is available for your perusal from SSC's
public FTP site. Listing 3 is a sample indicating what needed to be done.

Like the lex routine, yacc begins with lines to be included in the output code.
Programs written for graphical user interfaces sit in a loop waiting for the user
to click on something. When the user's needs are so indicated, the GUI-based
program calls a function to perform the required action. These “called
functions” are popularly called callbacks. In this program, one of the callbacks
was do_arithmetic, which in turn called the yacc routine, which in its turn called
the lex routine.

In Listing 3, do_arithmetic is described in the first few lines, and a portion of the
code may be seen in lines 428 to 532. They are shown only to give some
indication of what was being accomplished.

yacc does the work with its rules section beginning at line 79, and ending at line
426. Although too long to be included completely, you can see that an equation
is defined to be something called an lhs (left hand side) EQUAL rhs (right hand
side) at line 80. Looking down the listing, you will see that an equation may also
be described by an expr (expression). When either of these are encountered,
yacc pops a key from an internal stack created by a function called push (see
near line 557) and then causes a log curve to be returned to the caller by calling
another function called get_curve (not shown here, but included with the yacc
and lex code).

Between lines 118 and 139, you can see how some of the tokens yacc expects
are processed when recognized. The complete listing has many more.

Results

The lex, yacc and supporting code was successfully employed to allow the log
analysts to process various log curves. To have written the C code to
accomplish the lexical analysis and parsing logic would have taken much longer
than the four weeks allowed. As it turned out, this code was much easier to
create and debug than it was to introduce into the final Motif application, even
though it was written as a callback.

In fact, the number of lines of lex (152) and yacc (953) code were far fewer than
the number of lines generated by the two (2765). Of course, one could take the
time to write much tighter code than these general purpose tools deliver.

Nevertheless, should you be faced with a similar problem, I strongly
recommend using lex and yacc. They are powerful, reliable tools worth
knowing.

All listings referred to in this article are available by anonymous download in
the file ftp://ftp.linuxjournal.com/pub/lj/listings/issue51/2227.tgz.

Dean Provins (provinsd@cuug.ab.ca) is a professional geophysicist and licensed
amateur radio operator (VE6CTA) in Calgary, Alberta. He has used UNIX systems
since the mid-1980s and Linux since January, 1993. Dean uses Linux as a
development system for geophysical software, and as a text processing system
for a newsletter and other articles. He is currently enrolled as a graduate
student in Geomatics Engineering at the University of Calgary

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:provinsd@cuug.ab.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Amy Kukuk

Issue #51, July 1998

STREAMS Data Comm Protocols, Raven SSL Module for Apache, Java Workshop
2.0 for Linux and more.

STREAMS Data Comm Protocols

Gcom, Inc. has announced the Linux STREAMS application of their BASS line of
packaged synchronous adapter and software systems. The Gcom kits allow the
addition of synchronous capability for a PC platform. Protocols include X.25,
SNA, Frame Relay, SDLC, HDLC, LAPD, LAPB, QLLC and Bisync. The high-
performance communications board delivers line speeds of up to 5Mbps and
offers ISA or PCI bus design and many interface options. Prices start at $2,288
US for the end user. Gcom is the developer of Linux STREAMS.

Contact: Gcom, Inc., 1800 Woodfield Drive, Savoy, IL 61874, Phone:
217-351-4241, E-mail: sales@gcom.com, URL: http://www.gcom.com/.

Raven SSL Module for Apache

Covalent Technologies has announced the release of Covalent Raven, an SSL
module for the Apache web server. Raven functions can be used for secure
Internet transactions, including on-line banking, credit card purchases, safe
document transfers and more. Purchase price for Raven is $357 US.

Contact: Covalent Technologies, Inc., 121 South 13th Street, Suite B-105,
Lincoln, NE 68508, Phone: 402-441-5710, Fax: 402-441-5720, E-mail:
info@covalent.net, URL: http://www.covalent.net/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Java Workshop 2.0 for Linux

S.u.S.E. has announced Java Workshop 2.0 for Linux. This product brings Java
Workshop's visual development tool for Java programmers to the Linux
community. Java Workshop allows developers to use the Java platform to create
leading-edge Internet and Intranet applications. It offers a tool set for building
JavaBeans, Java applets and applications. Java Workshop also allows developers
to create and reuse JavaBeans. It includes support for the latest JDK and comes
with a compiler and profiler. Java Workshop for Linux is available at a list price
of $109 US.

Contact: S.u.S.E., LLC, 458 Santa Clara Avenue, Oakland, CA 94610, Phone:
1-510-835-7873, Fax: 1-510-835-7875, E-mail: info@suse.com, URL: http://
www.suse.com/.

VariCAD

VariCAD has announced its Mechanical CAD software—VariCAD. VariCAD is
equipped with all the basic tools necessary for mechanical design. It includes
true 3-D modeling optimized for construction and design, allowing one to
create, evaluate and modify a concept any way the user wants. Its other
functions include 2-D drawing, editing, transformations, working with user-
defined objects, blocks, groups and symbol-creation capabilities. The whole
system is customizable and easy to use. The price for VariCAD varies between
$100 and $2,000, according to platform and support.

Contact: VariCAD, P.O. Box 38, Liberec 460 02, Czech Republic, E-mail:
mail@varicad.com, URL: http://www.varicad.com/.

Cobalt Qube Microserver

Cobalt Microserver Inc. has announced the Cobalt Qube microserver. The Qube
microserver supports communication and collaboration services for the
Internet and Intranets. It features quick setup and “hands-off” administration.
With a suggested starting price of $999 US, the Qube microserver is aimed at
work groups and branch offices, Internet Service Providers, Web developers

and educational organizations. It provides basic services such as e-mail, web
publishing and file sharing as well as other services such as threaded
discussions and automated searching and indexing. The Qube microserver has
a complete Linux 2.0 operating system and includes the Apache web server.

Contact: Cobalt Microserver, Inc, 440 Clyde Avenue, Building B, Mountain View,
CA 94043, Phone: 650-930-2500, Fax: 650-930-2501, E-mail:
sales@cobaltmicro.com, URL: http://www.cobaltmicro.com/.

Screamer 633MHz Custom Workstations

Microway has announced the Screamer 633MHz motherboard and custom
workstations. These products deliver performance in such areas as CAD/CAM/
CEA, 3-D rendering, animation and multimedia. The Screamer motherboard
design offers four megabytes of cache and features the Samsung 633MHz
Alpha processor. For pricing details, look at the company's web site.

Contact: Microway, Inc., Research Park, Box 79, Kingston, MA 02364, Phone:
508-746-7341, Fax: 508-746-4678, E-mail: info@microway.com, URL: http://
www.microway.com/.

NetTracker Proxy 3.5

Sane Solutions, LLC has announced the release of NetTracker Proxy 3.5.
NetTracker Proxy is a web-based proxy and firewall log file analysis software.
Priced at $795 US, NetTracker Proxy 3.5 contains new features including
standardized summary reports with drill-down capabilities, as well as sorting
capabilities that allow administrators to select and sort the information they
analyze. It can export data, which allows administrators to import NetTracker
Proxy reports into popular software products.

Contact: Sane Solutions LLC, 35 Belver Ave., Suite 230, North Kingstown, RI
02852, Phone: 401-295-4809, E-mail: info@sane.com, URL: http://
www.sane.com/.

WebSite Professional 2.2

O'Reilly & Associates has announced the release of WebSite Professional 2.2,
which includes Uplink, O'Reilly's utility designed for Internet Content Providers
and Internet Service Providers. Another new feature is enhanced log file
management and generation. The inclusion of Live Software's new JRun 2.1
adds support for the Java Development Kit version 1.2 of the JavaSoft Servlet
Advanced Programming Interface 1.1. Suggested list price is $799 US. The
upgrade to version 2.2 is free for downloading by registered version 2.0 and 2.1
customers.

Contact: O'Reilly & Associates, 101 Morris Street, Sebastopol, CA 95472, Phone:
707-829-0515, E-mail: software@oreilly.com, URL: http://software.oreilly.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Miscellaneous Character Drivers

Alessandro Rubini

Issue #51, July 1998

Alessandro tells us how to register a small device needing a single entry point
with the misc driver.

Sometimes people need to write “small” device drivers, to support custom
hacks—either hardware or software ones. To this end, as well as to host some
real drivers, the Linux kernel exports an interface to allow modules to register
their own small drivers. The misc driver was designed for this purpose. The
code introduced here is meant to run with version 2.0 of the Linux kernel.

In UNIX, Linux and similar operating systems, every device is identified by two
numbers: a “major” number and a “minor” number. These numbers can be
seen by invoking ls -l /dev. Every device driver registers its major number with
the kernel and is completely responsible for managing its minor numbers. Use
of any device with that major number will fall on the same device driver,
regardless of the minor number. As a result, every driver needs to register a
major number, even if it only deals with a single device, like a pointing tool.

Since the kernel keeps a static table of device drivers, frivolous allocation of
major numbers is rather wasteful of RAM. The Linux kernel, therefore, offers a
simplified interface for simple drivers—those that will register a single entry
point. Note that, in general, allocating the whole name space of a major
number to every device is beneficial. This allows the handling of multiple
terminals, multiple serial ports and several disk partitions without any
overhead in the kernel proper: a single driver takes care of all of them, and
uses the minor number to differentiate.

Major number 10 is officially assigned to the misc driver. Modules can register
individual minor numbers with the misc driver and take care of a small device,
needing only a single entry point.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Registering a Minor Number

The misc driver exports two functions for user modules to register and
unregister their own minor number:

#include <linux/miscdevice.h>
int misc_register(struct miscdevice * misc);
int misc_deregister(struct miscdevice * misc);

Each user module can use the register function to create its own entry point for
a minor number, and deregister to release resources at unload time.

The miscdevice.h file also declares struct miscdevice in the following way:

struct miscdevice {
 int minor;
 const char *name;
 struct file_operations *fops;
 struct miscdevice *next, *prev;
};

The five fields have the following meaning:

• minor is the minor number being registered. Every misc device must
feature a different minor number, because such a number is the only link
between the file in /dev and the driver.

• name is the name for this device, meant for human consumption: users
will find the name in the /proc/misc file.

• fops is a pointer to the file operations which must be used to act on the
device. File operations have been described in a previous “Kernel Korner”
in April 1996. (That article is available on the web at http://
www.linuxjournal.com/issue24/kk24.html.) Anyway, the topic is refreshed
later in this article.

• next and prev are used to manage a circularly-linked list of registered
drivers.

The code calling misc_register is expected to clear prev and next before
invoking the function and to fill the first three fields with sensible values.

The real question with the misc device driver is “what is a sensible value for the
minor field?” Assignment of minor numbers is performed in two ways: either
you can use an “officially assigned” number, or you can resort to dynamic
assignment. In the latter case, your driver asks for a free minor number, and
the kernel returns one.

The typical code sequence for assigning a dynamic minor number is as follows:

static struct miscdevice my_dev;
int init_module(void)

{
 int retval;
 my_dev.minor = MISC_DYNAMIC_MINOR;
 my_dev.name = "my";
 my_dev.fops = &my_fops;
 retval = misc_register(&my_dev);
 if (retval) return retval;
 printk("my: got minor %i\n",my_dev.minor);
 return 0;
}

Needless to say, a real module will perform some other tasks within
init_module. After successful registration, the new misc device will appear in /
proc/misc. This informative file reports which misc drivers are available and
their minor numbers. After loading my, the file will include the following line:

63 my

This shows that 63 is the minor number returned. If you want to create an entry
point in /dev for your misc module, you can use a script like the one shown in
Listing 1. The script takes care of creating the device node and giving it the
desired permission and ownership.

You might choose to find an unused minor number and hardwire it in your
driver. This would save invoking a script to load the module, but the practice is
strongly discouraged. To keep the code compact, drivers/char/misc.c doesn't
check for duplication of minor numbers. If the number you chose is later
assigned to an official driver, you'll be in trouble when you try to access both
your module and the official one.

If the same minor number is registered twice, only the first one will be
accessible from user space. Although seemingly unfair, this can't be considered
a kernel bug, as no data structure is corrupted. If you wish to register a safe
minor number, you should use dynamic allocation.

The file Documentation/devices.txt in the kernel source tree lists all of the
official device numbers, including all the minor numbers for the misc driver.

Kernel Configuration

If you have tried to write your own misc driver but insmod returned unresolved

symbol misc_register, you have a problem in your kernel configuration.

Originally, the misc driver was designed as a wrapper for all the “busmouse”
drivers—the kernel drivers for every non-serial pointer device. The driver was
only compiled if the current configuration included at least one such mouse
driver. Just before version 2.0, the generality of the implementation was widely
accepted, and the driver was renamed from “mouse” to “misc”. It is still true,

https://secure2.linuxjournal.com/ljarchive/LJ/051/2920l1.html

however, that the driver is not available unless you chose to compile at least
one of the misc devices as either a module or a native driver.

If you don't have any such devices installed on your system, you can still load
your custom misc modules, provided you reply affirmatively, while configuring
your kernel, to the question:

Support for user misc device modules (CONFIG_UMISC)

This option indicates that the misc driver is to be compiled even if no misc
device has been selected, thus allowing run-time insertion of third-party
modules. The file /proc/misc and support for dynamic minor numbers were
implemented when this option was introduced, as there's little point in having
custom modules unless the allocation of a minor number is safe.

Note that if your kernel is configured to load busmice only as modules,
everything will work with the exception of /proc/misc. The /proc file is created
only if miscdevice.c is directly linked in the kernel. CONFIG_UMISC takes care of
this situation as well.

How Operations are Dispatched

Every time a process interacts with a device driver, the implementation of the
system call gives control to the correct driver by means of the file_operations

structure. This structure is carried around by struct file: every open file
descriptor is associated to one such structure, and file.f_op points to its own
file_operations structure.

This setup is similar to object-oriented languages: every object (here, every file)
declares how to act on itself, so that high-level code is independent of the
actual file being accessed. The Linux kernel is full of object-oriented
programming in its implementations, and several “operations” structures exist
in it, one for each different “object” (inodes, memory regions, etc.).

Back to the misc driver. How does my_dev.fops participate in the game? At
open time, the kernel allocates a new file structure to describe the object being
opened, and initializes its operations structure according to what the file is.
Sockets, FIFOs, disk files and devices get their own, different, operations. When
a device is opened, its operations are looked up according to the major device
number by referencing an array. The open method within the driver is then
called. Any other system call that acts on a file will then use file.f_op without
checking any other source of information. As a result, a driver can replace the
value of file.f_op to tailor the behaviour of a struct file to some inner feature,
even if that feature is at a finer grain than the major number, and thus is not
visible from the kernel proper.

The open method of the misc driver is able to dispatch operations to the actual
low-level driver by modifying file.f_op; the assigned value is the one in
my_dev.f_op. After the operations have been overridden, the method calls
file.f_op->open(), so that the low-level driver can perform its own initialization.
Every other system call invoked on the file will use the new value of file.f_op,
and the low-level driver keeps complete control over its device.

An Example: Keyboard LEDs

Since the discussion up to now has been much too philosophical, it's time to
move to a working example. The kiss module (Keyboard Informative Status
Signals) is a simple tool to play with the keyboard LEDs. It registers itself as a
misc device using dynamic minor-number assignment and is controlled by
writing textual commands to it. It accepts several one-byte commands, such as
“N” and “n” (to turn the Num-Lock LED on and off), the digits from 0 to 7 (to
display binary numbers in that range using the LEDs) and so on.

I don't think there's any need to include source code here, as the driver does
little more than the misc_register code shown above. Most of the additional
code deals with interpretation of the commands and actual lighting of the LEDs.
The tar file with source code and a README file can be retrieved from ftp://
ftp.linuxjournal.com/pub/lj/listings/issue51/2920.tgz.

As usual, the sample module that accompanies this article is pretty simple and
is of little interest in the real world. This time, however, I think it can be of some
interest. As a matter of fact, custom hardware in my computer includes three
LEDs to monitor the number of running processes. In my opinion, this is useful
information when you are wondering why the computer is not responding—a
situation quite common whenever you write buggy drivers or drivers that print
too many diagnostic messages.

Alessandro is still using Linux 2.0, because he's spending his spare time
building his own misc devices with a soldering iron. He enjoys open source and
open air, and reads e-mail as rubini@linux.it.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Yorick Programming Language

Cary O'Brien

Issue #51, July 1998

Yorick is an interpreted language for numerical analysis used by scientists on
machines from Linux laptops to Cray supercomputers.

Linux leverages a vast amount of academic software, either easy ports of
existing UNIX packages or, increasingly in recent years, software that is ready to
run under Linux. One example is Yorick, and this article is an attempt to provide
a brief overview of the nature and capabilities of this system.

Yorick is not just another calculator. Readable syntax, array notation and
powerful I/O and graphics capabilities make Yorick a favorite tool for scientific
numerical analysis. Machine-independent I/O, using the standard NetCDF file
formats, simplifies moving applications between hardware architectures. Yorick
is an interpreted language developed by David H. Munro at Livermore Labs.
Implemented in C, it is freely distributed under a liberal copyright. Yorick runs
on a vast range of machines, from 486SX Linux Laptops (in my case) to Cray
YMP supercomputers.

Who uses Yorick? The majority of users are physicists, many with access to the
most powerful computers in the world. Specific applications include
Astrophysics, Astronomy, Neurosciences, Medical Image Processing and Fusion
Research.

In this article I will discuss the basics of running Yorick, describe the key array
operations, and briefly discuss array operations, programming and graphics. I
hope that this quick look is enough to get the more mathematically inclined
readers to give Yorick a try.

Basic Operations

When invoked without arguments, Yorick presents a typical command-line
interface. Expressions are evaluated immediately, and the result is displayed.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Primitive types include integers, floating-point values and strings. All the built-in
functions and constants you would expect to be present are present. Variable
names are unadorned, with no leading $ character and need not be pre-
declared. C-style comments are supported.

One might not expect an interpreted language to be suitable for numerical
analysis, and indeed, this would be the case if arrays were not built into the
language. Arrays are first-class objects that can be operated on with a single
operation. Since the virtual machine understands arrays, it can apply optimized
compiled subroutines to array operations, eliminating the speed penalty of the
interpreter.

Arrays can be created explicitly:

> a1 = [1.1, 1.2, 1.3, 1.4, 1.5]

Elements can be accessed singly or as a subset, with 1 being the origin.
Parentheses indicate the indexing operation, and a single index or a range of
indices can be specified.

> a1
[1.1,1.2,1.3,1.4,1.5]
> a1(2)
1.2
> a1(1:3)
[1.1,1.2,1.3]

Since array operations are built into the language, functions applied to the
array are automatically applied to all elements at once.

> sqrt(a1)
[1.04881,1.09545,1.14018,1.18322,1,2.23607]

Arrays are not limited in dimension. The rank (number of indices) of an array is
not limited to one (a vector) or two (a matrix), but can be as large as desired.
Arrays of rank 3 can be used to represent the distribution of a parameter
across a volume, and an array of rank 4 could model this over time.

Yorick also provides a simple but effective help system. Executing the help
command describes the help system. Executing it with a command name as an
argument provides information on that command.

Yorick provides a complete programming language that closely matches C in
terms of control flow, expressions and variable usage. For example, the
statement:

> for(i=1; i<10; i++) { print,1<<i; }

will print the powers of two just as you would expect. Function declarations,
introduced with func, also work as expected:

> func csc(x) {
> return 1/sin(x);
> }

There are differences—variables need not be declared, and arrays are much
more powerful than in C. The major difference is in function invocation. Passing
arguments to a function in parentheses causes an evaluation and printing of
the result; however, passing arguments separated by commas simply executes
the function and does not return the result. Since in most cases intermediate
results are not required, many scripts contain function calls of the form f,x,y
rather than the more familiar f(x,y).

Having a programming language close to C allows easy migration between
Yorick for prototyping and C for final implementation. However, as several
Yorick users have indicated, moving to C is often unnecessary—the Yorick
program proved to be fast enough to get the job done with a minimum of
programming effort.

If C extensions are required, a straightforward framework allows extending the
Yorick command language with whatever new operations are necessary.

Advanced Array Operations

Yorick has a compact and sophisticated mechanism for describing array
indexing and operations, which are used to precisely specify the desired
operation to the interpreter. Applying an operation to an array causes the
operation to be applied to each element of the array. For example:

> a = [1,2,3,4,5]
> sqrt(a)
[1,1.41421,1.73205,2,2.23607]

What about multiplying two vectors? The default is to perform an element by
element multiplication.

> b = [2,4,6,8,10]
> a*b
[2,8,18,32,50]

Those of you who remember physics or linear algebra will recall inner and
outer products. The inner product is defined as the sum of the pairwise
products:

> a(+)*b(+)
110

The outer product creates a matrix out of each possible multiplication:

> a(-,)*b(,-)
[[2,4,6,8,10],
 [4,8,12,16,20],
 [6,12,18,24,30],
 [8,16,24,32,40],
 [10,20,30,40,50]]

The + and - symbols, used where an index would be placed, are called special
subscripts and provide precise control over how array operations are executed.
The + is the matrix multiplication pseudo-index, which indicates to Yorick along
which dimension the addition part of a matrix multiply should be performed.
The - is a pseudo-index, creating an index where one did not exist before.

The rank-reducing operators sum, min, max and avg can be used in place of
indices.

> a(max)
5
> b(avg)
6

One might wonder why this is necessary, when the equivalent function
operators (i.e., min() or avg()) exist? The reason is that for matrices of rank 2 or
greater, the rank-reducing index operators allow you to specify exactly how to
perform the operation. For example, given a 3x3 array, do you want to average
across rows, columns or the entire array?

> c = [[1,2,3],[4,5,6],[7,8,9]]
> dimsof(c)
[2,3,3]
> avg(c)
5
> c(avg,avg)
5
> c(avg,)
[2,5,8]
> c(,avg)
[4,5,6]

Here we have also introduced the dimsof() function operator, which reports the
dimensions of the argument. In this case, the result tells us that c is an array of
rank 2 with three elements in each direction.

Graphics Operations

Under Linux, Yorick is linked with the GIST graphics subsystem, allowing
immediate display of plots and diagrams. Plots are interactive, allowing the
user to zoom in and out, stretch axes, and crop the displays using the mouse.
Yorick is capable of displaying sequences of plots over time as in a movie, and
because of this, the command to prepare for a new image is fma or frame
advance.

To plot the value of a function at evenly spaced points, we must first create the
x values:

> x = span(0,10,256)
> dimsof(x)
[1,256]

x is now a 256-element array with values that range from 0 to 10.

Figure 1. x-y Plot

The plg function, given vectors for the x and y values, plots x-y graphs.

plg, sin(x^2), x

The results of this command are shown in Figure 1. Note that the arguments
are supplied y,x (not x,y). This allows Yorick to supply a default x vector (ranging
from 1 to the number of y points), if desired.

Parametric plots are also supported. Consider the following commands which
produced the spiral in Figure 2:

> window, style="vgbox.gs"
> a = span(0,20,256)
> x = a * sin(a)
> y = a * cos(a)
> plg, y, x

Figure 2. Spiral Plot

Surface plots are also available, either as a wire frame as in Figure 3:

> #include "plwf.i"
> orient3
> x = span(-pi,pi,32)(,-:1:32)
> y = transpose(x)
> fma
> plwf, sin(x)*cos(y)

Figure 3. Wire Frame Surface Plot

Or a shaded surface rendition as in Figure 4:

> fma
> plwf, sin(x)*cos(y), shade=1, edges=0

Figure 4. Shaded Surface Plot

A host of advanced graphics options are used in the demonstration programs
distributed with Yorick, and the latest copy of the documentation has an
extensive description of graphics options. In addition, libraries to read, write,
and display PNM-format images are provided.

Closing Remarks

Yorick is an exceptionally rich environment for numerical analysis. Many of its
capabilities such as file I/O, debugging, animation and distributed operation
using MPY have not been explored in this article. Please take the time to read
through the documentation and the example programs. You will not be
disappointed.

Resources

This article was first published in Issue 26 of LinuxGazette.com, an on-line e-
zine formerly published by Linux Journal.

Cary O'Brien (cobrien@access.digex.net) lives in Washington DC, and refers to
himself, when pressed, as a “systems engineer”. He is currently Vice President

https://secure2.linuxjournal.com/ljarchive/LJ/051/2184s1.html
mailto:cobrien@access.digex.net

of Optim Systems, Inc., which provides products and services to the
telecommunications industry. He has been messing with computer hardware
and software since high school. He is married with two children, 4 and 7, who
are starting with computers even earlier.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #51, July 1998

Our experts answer your technical questions.

Unfinished Boot

When I try to boot, either from floppy or CD-ROM, my computer does a soft re-
boot partway through the process. It doesn't even make it to the screen which
asks if you have a color monitor, although I suspect it gets close to that point.
I've tried running the boot disk on my kid's computer and it works fine. There is
not a lot of difference between my computer and my kid's, but here are a few:

Any thoughts? Thanks for any help you can give me.

—Bruce Matthews Red Hat 4.2

mine: Pentium 166 kid's: Pentium 133

mine: 96MB RAM kid's: 32MB RAM

my video card: Creative's kid's: Cirrus logic

 video blaster 3D

mine: 1GB drive + Syquest SparQ kid's: 540MB drive + CD-ROM

 (IDE) + CD-ROM

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

It sounds as if the kernel doesn't care for your video card. This is highly
unusual, but it may be the case. Try a different video card to see if it helps. You
might also try the boot disks from Red Hat 5.0 to see if a newer kernel helps
with the problem. If so, you may have to use the newer version.

—Donnie Barnes redhat@redhat.com

Crashing XFree86

While using XFree86 3.3.1, it will crash unexpectedly and return the following
message:

Fatal server error: Caught signal 4.
 Server aborting
X connection to :0.0 broken
 (explicit kill or server shutdown).
X connection to :0.0 broken
 (explicit kill or server shutdown). xinit:
connection to X server lost.

Sometimes, instead of Caught signal 4, it returns 11, but the rest of the
message is the same. This usually happens when I'm opening or using a
program.

—Aaron Walker Red Hat 5.0

This may point to a faulty memory chip. Try stress testing your system, e.g., by
compiling a huge package with optimization, such as your usual kernel compile.
If a similar thing happens, it's the memory.

—Ralf W. Stephan stephan@tmt.de

This is usually indicative of a hardware problem. You should take a look at
http://www.bitwizard.nl/sig11/ for information on how to determine if this is
the case and how to fix it.

—Donnie Barnes redhat@redhat.com

Damage After a Crash

My /var partition filled to 100% recently (I installed some alpha software that
bombed 40MB of logs), and basically, I crashed. On reboot, there was damage
to the file systems, so I know some things are broken.

My <path>/lost+found directories contain some chunks of data after running
fsck, and I assume I can do something to discover what has been damaged and
reinstall those packages. How do I do that?

The specific problems I'm now having are:

1. xdm launches the xserver, but the login screen does not come up and the
background graphic is a very large text “Red Hat Linux”. I think this is
probably related to #2.

2. bash (and other shells) can't seem to find/execute scripts. ls sees them
and vi edits them, but bash says it can't find them on execute attempts.
Thanks in advance.

—Rob Collins Red Hat 5.0

First, you can go to the lost+found directories and use the file command to see
what type of data they are. Then use an appropriate viewer to look at the file.
For ASCII text you can use more, less, etc. For files of type “data”, a good way to
figure out what they are is to run strings filename | less to look at any strings
that appear in the file. Those strings may yield some clues.

The next thing you'll want to do is run rpm -Va on your system. That will tell you
about any files existing in your RPM database that have changed in any way.
Some of them are normal (things in /dev, for example), but it should be easy to
tell what else has changed. Look at the man page for RPM (man rpm) for an
explanation of the Va output. Once you find files that have changed or are
missing, you will want to fix them. The best way is to reinstall the package
completely.

Both of your problems will probably be fixed by going through the above steps.

—Donnie Barnes redhat@redhat.com

Interlace Mode

How do I take my monitor out of interlaced mode? I run it in non-interlaced
mode in Windows 95, so I know it can run non-interlaced. I use the FVWM
window manager. Thanks.

—Cliff Slackware 2.3

In order to change the mode in which X will be running, you need to change the
XF86config file, generally located in the /etc/X11 directory. This file contains
important information about your X server, such as the horizontal/vertical
frequencies supported by your monitor. Editing this file by hand can be tricky,
so I suggest you:

1. Back up your running XF86config. (Do a find / -name XF86config to
discover the correct location.)

2. Run XF86config and change the desired features. Be very careful with the
horizontal/vertical frequencies.

3. Type startx at the prompt.

—Mario de Mello Bittencourt Neto mneto@buriti.com.br

Stuck with Multi-serial Port Troubles

I bought an HP NetServer Pro (Pentium Pro) to run a multi-serial port
(DigiBoard Xem 16 RS232 ports). I loaded in the 2.0.30 kernel sources from
InfoMagic and recompiled the kernel to recognize the DigiBoard. I used a boot
disk to boot-up Linux, but it didn't work. Each time, it hangs, and the error
message returned is “vfs: kernel panic... etc.”

The original kernel on the boot disk works, but any recompilation of the kernel
causes that error message. The DigiBoard module is loaded properly before the
error appears.

I need to set the machine up urgently, and yet I'm stuck. I need help. Thank
you.

—Weng-Yue Boey InfoMagic 2.0.30

Unfortunately, what you've described seems to be a hardware problem (bad
cache, bad memory). You say that you can run any precompiled kernel, but if
you try compiling yours (or any other huge program), you end up with a “got
signal 11...” message.

I would suggest turning off the cache or removing some of the memory, then
try compiling once more.

—Mario de Mello Bittencourt Neto mneto@buriti.com.br

Firewall Troubles

I am setting up a firewall and masquerade at my office to service approximately
fifty workstations. The masquerade will be used to allow multiple users to
access the Internet with a private IP addressing scheme (10.0.0.0\8), and the
firewalling is for added security. I have successfully implemented
masquerading in both a test and production environment; I have been
successful with the firewall only in a test environment.

The problem in the test environment is when I change to the /sbin/init.d
directory and attempt to execute firewall list, I get a “command not found”

error. The firewall script is present in that directory. firewall start and firewall

stop also will not execute.

Any suggestions on where to go next would be appreciated. Thanks,

—Doug Ford S.u.S.E. 5.0

It sounds like your current directory isn't included in your PATH. You can either
set your PATH to include the current directory (generally a bad idea for root) or
just prepend the command you want to run with ./, for example, ./firewall stop.

—Mark Bishop mark@bish.midwest.net

Adding an Ethernet Driver to the Kernel

My Ethernet card was installed improperly. How do I add a new Ethernet driver
into the kernel? I mean, how do I recompile the kernel to include the new
driver?

—John Liu Slackware 2.0.29

As root, go into /usr/src/linux, run make menuconfig and when you're done,
make zImage. The new kernel is then in /usr/src/linux/arch/i386/boot/. Put it
somewhere else, such as the / directory, preferably with a new name, then
configure and run LILO. (You should keep your old kernel in lilo.cfg in case the
new one has problems.) Reboot.

—Ralf W. Stephan stephan@tmt.de

Editing motd and issue

How do I edit the motd and issue files? Do I need to be in single-user mode?
How do I get into single-user mode?

—Scott Slackware

Edit the file /etc/issue or /etc/motd with your favorite editor. No, you don't need
to be in single-user mode.

—Mark Bishop mark@bish.midwest.net

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/051/toc051.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

	Features
	News & Articles
	Reviews
	WWWsmith
	Columns
	The Crystal Experiment
	Emanuele Leonardi
	Giovanni Organtini
	Enter Linux
	The CAMAC Device Driver
	DAQ Control and Monitoring Programs
	Performance
	Conclusion

	Due South with the British Antarctic Survey
	Craig Donlon
	James Crawshaw
	The Atlantic Meridional Transect
Experiment
	Why Choose Linux?
	Software Support
	Linux in Other Areas
	Conclusions

	Linux in a Scientific Laboratory
	Przemek Klosowski
	Nick Maliszewskyj
	Bud Dickerson
	Interfacing to the Real World
	RS-232 (Serial) Ports
	GPIB Bus
	Versabus Module Europe (VME)
	Programmable Logic Controllers (PLC)
	Other Interfaces
	Network-Distributed Data Acquisition
	Scientific Visualization and
Computations
	Scripting and Very High-Level Languages

	Global Position Reporting
	Richard Parry
	APRS
	APRS Servers
	PerlAPRS
	GPS Primer
	GPS Accuracy
	Conclusion

	Javalanche: An Avalanche Predictor
	Richard Sevenich
	Rick Price
	Variables for Avalanche Prediction
	Essential Elements of Fuzzy Logic
	The Fuzzy Sets for the Javalanche Model
	The Rules for the Javalanche Model
	A Sample Calculation
	An Overview of the Software
	Possible Future Work

	ROOT: An Object-Oriented Data Analysis Framework
	Fons Rademakers
	Rene Brun
	Main Features of ROOT
	The CINT C/C++ Interpreter
	Installation
	First Interactive Session
	Histogramming and Fitting
	The GUI Classes and Object Browser
	Integrating Your Own Classes into ROOT
	Linux an Increasing Force in Scientific
Computing
	Summary

	A Glimpse of Icon
	Clinton Jeffery
	Shamim Mohamed
	My Programming Language Can Beat Up Your
Programming Language
	Icon: Listing the Basics
	The Joy of Generators
	Graphics and User Interfaces
	POSIX Made Simple

	Having Fun on ViewSurf
	Pierre Ficheux
	Using Linux
	The Future of ViewSurf

	Encrypted File Systems
	Bear Giles
	Solution: File Encryption
	Solution: File System Encryption
	Encryption Algorithms
	XOR
	DES
	IDEA
	RSA
	Obtaining the Source: Cypherpunks
	Building the Kernel
	Encrypted File Systems: Ready, Set, Go!
	Applications
	Long-Term Applications

	Graphical Desktop Korn Shell
	George Kraft IV
	DtKsh Benefits
	DtKsh “Hello World” Source
	User Extendable
	Conclusion

	A SCSI Test Tool for Linux
	Pete Popov

	Introducing Samba
	John Blair
	Windows Networking
	Samba's Components
	Configuring Samba
	A Simple Configuration
	Conclusions

	Softfocus BTree/ISAM v3.1
	Edmund P. Morgan
	Documentation
	Installation
	Software
	Conclusion

	Insure++
	Jim Nance
	Getting Started
	Learning about Insure++
	Installation
	Advanced Debugging
	An Example
	Conclusion

	Combining Apache and Perl
	Reuven M. Lerner
	Retrieving and Installing mod_perl
	Configuring Apache for mod_perl
	Basic Programs with mod_perl
	CGI Programs with mod_perl
	A non-CGI use of mod_perl
	What Next?

	Letters to the Editor
	Various
	Satellite Remote Sensing
	Kernel Korner
	About Issue 47 (GUI)
	Dealing with Cookies
	About Ghostscript
	PhotoShop
	APO Mailing

	COMDEX/Spring 1998
	Jon “maddog” Hall

	lex and yacc: Tools Worth Knowing
	Dean Allen Provins
	Some Background
	The Problem
	The Tools
	How The Tools Are Used
	Basic Coding of lex and yacc Programs
	How lex and yacc were employed in Log
Analysis
	Results

	New Products
	Amy Kukuk
	Raven SSL Module for Apache
	Java Workshop 2.0 for Linux
	Cobalt Qube Microserver
	Screamer 633MHz Custom Workstations
	NetTracker Proxy 3.5
	WebSite Professional 2.2

	Miscellaneous Character Drivers
	Alessandro Rubini
	Registering a Minor Number
	Kernel Configuration
	How Operations are Dispatched
	An Example: Keyboard LEDs

	The Yorick Programming Language
	Cary O'Brien
	Basic Operations
	Advanced Array Operations
	Graphics Operations
	Closing Remarks

	Best of Technical Support
	Various
	Unfinished Boot
	Crashing XFree86
	Damage After a Crash
	Interlace Mode
	Stuck with Multi-serial Port Troubles
	Firewall Troubles
	Adding an Ethernet Driver to the Kernel
	Editing motd and issue

